

Northern Gateway Pipelines Limited Partnership

Semi-Quantitative Risk Assessment

February 2013 Update Route Rev V

Submitted in Response to Northern Gateway Undertaking U-42

Enbridge Northern Gateway Project

Project No. 407016-00013

WorleyParsons Canada Services Ltd. – Calgary Operations 400, 10201 Southport Road SW Calgary, Alberta T2W 4X9 Canada Telephone: +1 403 258 8000 Facsimile: +1 403 258 5893 www.worleyparsons.com

Copyright 2013 WorleyParsons

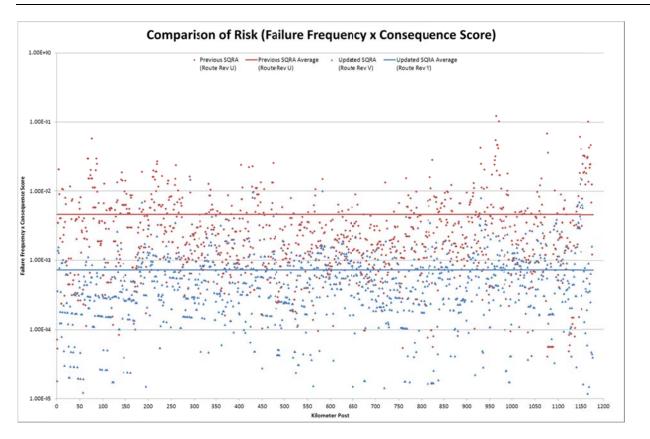
resources & energy

EXECUTIVE SUMMARY

This Semi-Quantitative Risk Assessment: February 2013 Update Route Rev V (SQRA) was prepared by WorleyParsons Canada Services Ltd. (WorleyParsons) for the Enbridge Northern Gateway Project (the Project).

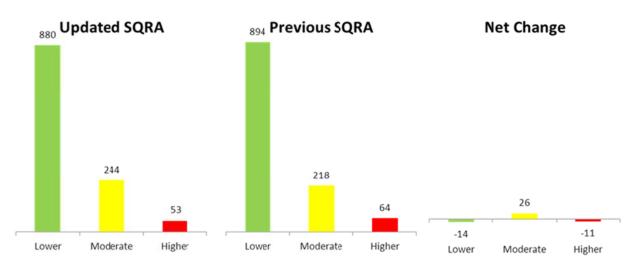
This updated SQRA provides a consolidated document that reflects the changes to the design basis and the route since the previous filing, and in particular the changes to pipeline wall thickness and valve spacing as a result of commitments made by Northern Gateway. It was prepared to respond specifically to an undertaking given by Northern Gateway to an intervenor (U-42) during the course of the Final Questioning portion of the Prince George phase of the JRP hearing. The undertaking sought an update to the previously filed SQRA (B75-2) to compare the assessed risk of the pipeline taking into account Northern Gateway's commitment to implement engineering, design and operation measures to enhance the safety and reliability of the pipelines over and above standard industry practice. This updated SQRA takes into account these measures, other commitments and engineering design refinements.

The assessment methodology follows the definitions and guidelines provided in Canadian Standards Association (CSA) CSA Z662-11, *Guidelines for Risk Assessment of Pipelines*. The magnitude of risk as defined by this standard is the combination of the frequency or likelihood of an event and the consequence of the event if it happens.


Risk severity was evaluated through a risk matrix developed for the Project as a combination of the frequency and the consequence of a full-bore rupture. In addition to conveying descriptive risk severity by means of a risk matrix, and to facilitate a comparison in results between the previous SQRA and this update, risk scoring (defined as a product of failure frequency and consequences) was also used. Using this method, risk results are influenced equally by changes in failure frequency and consequences. This method is useful for a determination of a directional change to risk.

Northern Gateway's commitments to increased wall thickness provide additional protection against a number of threats, additional geotechnical assessments have resulted in lowering the frequency of geohazard failure, and an increased numbers of valves will reduce potential volumes of releases. The return period of a full-bore rupture has gone from 240 years to 464 years.

The risk reduction along the pipeline route is shown in the following figure that compares the results of the previous SQRA to the updated SQRA.



Based on the product of frequency and consequence the risk has been reduced by 84%.

The risk matrix that was used in the previous SQRA for conveying risk results is not as sensitive to changes in failure frequency as it is to changes in consequences. Nevertheless, using the risk matrix, the number of higher risk segments has been reduced by 11.

Risk Severity Ratings and Comparison to previous SQRA

The terrain and geotechnical conditions that this pipeline traverses are similar to those of other liquid transmission pipelines in Canada and throughout the world. The products to be carried by the pipelines are also carried by other existing pipelines in Canada and the United States.

This SQRA was based on assessing risk from a full-bore rupture on the proposed oil pipeline. Northern Gateway recognizes that a release of any magnitude from the pipeline is unacceptable and will undertake additional work during the detailed design phase to identify and apply mitigation to minimize risk of a release.

Further work will be undertaken by Northern Gateway in detailed design, construction and operations using the liquid pipeline risk assessment and management tools developed by Enbridge as part of its continuous improvement in these areas.

WorleyParsons
recourses Q energy

resources & energy

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

TABLE OF CONTENTS

EXECU	TIVE SUN	MMARY	
TABLE (OF CONT	rents	V
LIST OF	FIGURE	S	VII
LIST OF	TABLES	5	VII
1.	INTRO	DUCTION	1
1.1	Purpos	e of the Update to the Semi-Quantitative Risk Assessment	1
1.2	Backgr	ound	3
	1.2.1	Project description	3
1.3	Termin	ology	4
2.	OVER\	/IEW	5
2.1	Semi-C	Quantitative Risk Assessment	5
2.2	Northe	n Gateway Oil Spill Risk Assessment Timeline	5
2.3	Assess	ment Methodology Overview	6
3.	HAZAF	RDS, THREATS AND EVENT IDENTIFICATION	8
3.1	Pipeline	e System Threats	8
3.2	Geotec	hnical Hazards and Threats	8
4.	FULL-E	BORE RUPTURE FAILURE FREQUENCY ASSESSMENTS	10
4.1	Pipeline	e System Failure Frequency	10
	4.1.1	External corrosion	10
	4.1.2	Internal corrosion	11
	4.1.3	Materials and manufacturing defects	12
	4.1.4	Construction (welding and installation) defects	13
	4.1.5	Third-party damage	14
	4.1.6	Incorrect operations	16
	4.1.7	Equipment failure	17
4.2	Geoha	zards and Hydrological Threats	18
	4.2.1	Summary of methods	18
4.3		ary of Results for Full-Bore Rupture Failure Frequencies	
	4.3.1	Combined full-bore rupture frequencies	
4.4	Spill Re	eturn Period	23

resources & energy

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

5.	ASSESS	SING CONSEQUENCES	24
5.1	Full-Bore	e Rupture Volumes and Spill Extents	24
	5.1.1	Volume out calculations	24
	5.1.2	Full-bore rupture spill extents	24
5.2	High Co	nsequence Areas	26
	5.2.1	Definitions	26
	5.2.2	Consequence scoring factors	26
5.3	Consequ	ience Scoring	27
5.4	Consequ	ence Scoring by Pipeline Segment	29
5.5	High Co	nsequence Area Impacts	29
5.6	Translati	on of Consequence Scoring into Consequence Ranking	30
6.	RISK AS	SESSMENT	31
6.1	Methodo	logy	31
6.2	Results.		32
	6.2.1	Risk severity by pipe segment	32
	6.2.2	Risk severity by physiographic region	33
	6.2.3	Risk scoring results	34
7.	DISCUS	SION OF RESULTS	35
7.1	Conclusi	ons	35
7.2	Risk-Bas	ed Approach to Design and Mitigation	36
REFERE	NCES		37
APPEND	IX A:	ABBREVIATIONS	39
APPEND	IX B:	HIGH CONSEQUENCE AREA DEFINITIONS	40
APPEND	IX C:	BUFFER CREATED BY MORICE RE-ROUTE	43
APPEND	IX D:	LIST OF ATTACHMENTS	44
ATTACHI	MENT 1: REV. V	FAILURE LIKELIHOOD ASSESSMENT MODIFICATIONS - ROUTE	45
ATTACHI		SIMULATIONS OF HYPOTHETICAL OIL RELEASES FROM THE ERN GATEWAY PIPELINE – ROUTE REV. V	46
ATTACHI		REPORT ON QUANTITATIVE GEOHAZARD ASSESSMENT - REV. V	47

WorleyParsons

resources & energy

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

LIST OF FIGURES

Figure 1:	Overview of methodology	7
Figure 2:	Land use distribution (Route Rev V)	15
Figure 3:	Frequency of third-party damage creating a full-bore rupture (Route Rev V)	16
Figure 4:	Full-bore rupture frequency (Route Rev. V)	22
Figure 5:	Full-bore rupture frequency previous SQRA (Route Rev. U)	22
Figure 6:	Rupture frequency comparison – previous SQRA to updated SQRA	23
Figure 7:	Consequence scoring	28
Figure 8:	Risk matrix	31
Figure 9:	Risk severity for Route Rev. V and comparison with previous SQRA (Route Rev. U)	32
Figure 10:	Risk severity classification by physiographic region (Route Rev V)	33

LIST OF TABLES

Table 1:	Terms and definitions used in this report	4
Table 2:	Threats with full-bore rupture failure frequencies that do not vary along the route	21
Table 3:	Threats with frequencies that vary along the route for a full-bore rupture	21
Table 4:	Median volume out comparison (m ³)	24
Table 5:	Full-bore rupture extent without mitigation or emergency response	25
Table 6:	Comparison of higher consequence watercourses	29
Table 7:	Consequence matrix	30

1. INTRODUCTION

This Semi-Quantitative Risk Assessment. February 2013 Update Route Rev V ((this SQRA) was prepared by WorleyParsons Canada Services Ltd. (WorleyParsons) for the Enbridge Northern Gateway Project (the Project). This SQRA report is supported by an updated Report on Quantitative Geohazard Assessment prepared by AMEC Environment & Infrastructure, a division of AMEC Americas Limited, (AMEC) contained in Attachment 3.

Consistent with the guidance that was given during the JRP process to characterize full-bore rupture effects; this SQRA report continues to focus on full-bore ruptures. From the perspective of a risk-based approach to design as well as consequence mitigation, the focus of this assessment is on ruptures because ruptures have the potential for the most extreme consequence. Consequence mitigation measures that are developed and incorporated into the design for mitigating ruptures will also be effective in mitigating less significant releases.

1.1 Purpose of the Update to the Semi-Quantitative Risk Assessment

Since the previous SQRA filing (B75-2) in June 2012, Northern Gateway committed to additional engineering, design and operation measures to enhance the safety and reliability of the pipelines over and above standard industry practice (B83-2). During the course of the Final Questioning portion of the JRP hearing, questions were directed by an intervenor to Northern Gateway in respect of these measures, its commitment to refine its engineering design, and how these measures would reduce risk (93T15087 – 15159). To be responsive to these questions, Northern Gateway provided an undertaking (U-42) to update the SQRA to take into account these measures and other commitments and engineering design refinements, including:

- 1. A commitment to increasing the wall thickness of the pipe and in particular where the pipeline crosses the Fraser, Skeena and Kitimat drainages.
- 2. A commitment to increasing the number of block valves along the route to reduce the volume of potential releases.
- 3. A route revision to move the pipelines south, farther away from the Morice River.
- 4. Changes to pump station locations.
- 5. Route Revision V, filed in December 2012, which incorporates the above measures, commitments and design refinements.
- 6. Refinements in geohazard assessment and determination.

This update to the SQRA was prepared to respond specifically to the undertaking given by Northern Gateway and provides a consolidated document that reflects the changes to the design basis and the route since the previous filing based on Route Rev U, as well as updates that were provided during the IR process in August and September of 2012.

This document describes and updates:

- 1. the components and methodology of the risk assessment, including the geotechnical threat evaluation, the frequency assessment and the risk evaluation;
- 2. the results of the risk assessment; and
- 3. a discussion of these results and next steps.

In addition to conveying descriptive risk severity by means of a risk matrix, and to facilitate a comparison in results between the previous SQRA and this update, risk assessment scoring (product of failure frequency and consequences) is used.

1.2 Background

1.2.1 Project description

Northern Gateway, a subsidiary of Enbridge Pipelines Inc., has initiated the regulatory phase of the Project to obtain the required approvals. The Project is being developed to provide pipelines and associated facilities to transport approximately 83,400 m³/d (525,000 bbl/d) of oil from Bruderheim, Alberta, to Kitimat, British Columbia (BC), and approximately 30,700 m³/d (193,000 bbl/d) of condensate from Kitimat to Bruderheim. It includes the following major components for Route Rev V:

- an oil pipeline, 914 mm OD (NPS 36) approximately 1,178-km long, extending from the outlet of the Bruderheim Station to the Kitimat Terminal
- a condensate pipeline, 508 mm OD (NPS 20) approximately 1,178-km long, located in the same rightof-way (ROW) as the oil pipeline and extending from Kitimat Terminal to the Bruderheim Station
- the Bruderheim Station, consisting of the oil initiating pump station and condensate receiving facilities
- eight intermediate pump stations located at intervals along the pipelines
- a 6.5-km-long tunnel and a 6.6-km-long tunnel to route the oil and condensate pipelines through the Clore River and Hoult Creek valleys
- Kitimat Terminal, which will comprise the following:
 - o a tank terminal including oil tanks, condensate tanks and associated infrastructure
 - o a marine terminal including two tanker berths and one utility berth
 - an initiating condensate pump station
 - oil receiving facilities

1.3 Terminology

Table 1 provides definitions for terminology used in this report. Appendix A lists abbreviations used in this document.

Term	Definition
Consequence	The effect of a hydrocarbon spill on individuals or populations, property, or the environment.
Consequence area	Term provided by the Joint Review Panel in their request for additional information as "onshore and/or offshore including but not limited to: wildlife reserves, occupied areas, Indian Reserves, urban areas or towns, water bodies, federal or provincial campgrounds and parks and town water intake locations". This term has been subsequently replaced by "high consequence area" in Northern Gateway's assessment.
Frequency	The likelihood of an event, expressed qualitatively or quantitatively (such as failures per km-year) or as a return period.
Geohazard	A threat from a naturally-occurring geological process or condition that may lead to damage. The process may be triggered by natural or anthropogenic causes. For the purposes of this assessment, the damage is damage to the pipeline that might lead to a rupture. Examples include mass wasting, deep seated slides, debris flows, rock fall, avalanches and hydrological events. Also referred to as geotechnical hazard.
High consequence area (HCA)	Equivalent to and supersedes the term "consequence area" for Northern Gateway's assessment (see Appendix B).
Project effects assessment area (PEAA)	The maximum area where Project-specific environmental effects can be predicted or measured with a reasonable degree of accuracy and confidence.
Return Period	A measure of frequency of an event expressed in years. The return period represents the average interval between events over an extended period of time.
Risk	A compound measure of the frequency and severity (consequences) of an adverse effect.
Risk assessment	The process of risk analysis and risk evaluation.
Risk-based approach to design	An iterative process that evaluates and prioritizes risks and the affiliated risk-drivers that are associated with a preliminary design, and then establishes mitigation measures to be incorporated into the final design to address the identified principal risks.
Rupture (full-bore rupture)	A type of failure of the oil pipeline which allows the product to be released in an unconstrained manner into the surrounding environment.
Spill trajectory modelling	A numerical modelling technique that estimates the extent of a spill based on modelled release outputs, topographical and hydrodynamic parameters.

Table 1: Terms and definitions used in this report

2. OVERVIEW

2.1 Semi-Quantitative Risk Assessment

As defined in Food and Agriculture Organization (2009), semi-quantitative risk assessment provides an intermediary level between the textual evaluation of qualitative risk assessment and the numerical evaluation of quantitative risk assessment, by evaluating risks using a scoring approach. It offers a more consistent and rigorous approach to assessing and comparing risks and risk management strategies than does qualitative risk assessment, and avoids some of the greater ambiguities that a qualitative risk assessment may produce.

As employed in this analysis, semi-quantitative risk assessment incorporates a quantitative evaluation of failure frequency and a semi-quantitative evaluation of consequence. The characterization of risk in this SQRA is sensitive to design parameters, and so it is a useful tool for providing guidance in a risk-based approach to design, whereby the potential for risk reduction through alteration of those design parameters can be investigated.

In addition to conveying descriptive risk severity by means of a risk matrix, and to facilitate a comparison in results between the previous SQRA and this update, risk scoring as a product of failure frequency and consequences was also used. Using this method, risk results are influenced equally by changes in failure frequency and consequences. Consequently, this method is useful for a determination of a directional change to risk.

2.2 Northern Gateway Oil Spill Risk Assessment Timeline

Information on the environmental effects of spills and the management of spills (including ruptures) for the pipelines was provided in Volume 7B of the Project's National Energy Board (NEB) Section 52 Application (B3-20, B3-21).

Following a review of the Application, the JRP in its Panel Session Results and Decision dated 19 January 2011, determined that additional information on the pipelines' design and risk assessment was required prior to issuing a hearing order for the Project. Northern Gateway was requested to provide:

Geographically referenced maps at a 1:25,000 scale (such as GIS) describing the geographical extent, on land and water, from potential hydrocarbon releases on consequence areas. The potential hydrocarbon release volumes shall be determined based on full-bore ruptures within each kilometre post distance.

In March 2011, Northern Gateway filed (B20) pipeline maps showing the extent of releases based on a fullbore rupture scenario for the oil pipeline and the consequence areas. Northern Gateway also provided pipeline plots showing elevations and potential volumes from releases.

In June 2012, the SQRA for Route Rev U was filed (B75-2). It built on the work completed in March 2011 by developing a process to assess the frequency, consequences, and resulting risk of a full-bore rupture scenario to the high consequence areas (HCAs).

Prior to the commencement of the oral questioning phase of the hearings, Northern Gateway filed an update to the full-bore spill extent mapping for Route Rev U that showed the effect of the additional valves that were committed to in July 2012 (Reference B109-16 to B109-23; B130-02 to B130-20).

The risk assessment presented in this report builds on the previous SQRA (B75-2) and the methodology previously developed. It provides a consolidated document that reflects changes to the design basis and updates the results to Route Rev V.

2.3 Assessment Methodology Overview

The assessment methodology follows the definitions and guidelines provided in Canadian Standards Association (CSA) CSA Z662-11, *Guidelines for Risk Assessment of Pipelines,* Annex B (CSA 2011). The magnitude of risk, as defined by this standard, is the combination of the frequency or probability of an event and the consequence of the event if it happens. The methodology shown in Figure 1 was described in detail in the Framework *for Semi-Quantitative Risk Evaluation,* Response to JRP IR 8.1 (B47-11).

resources & energy

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

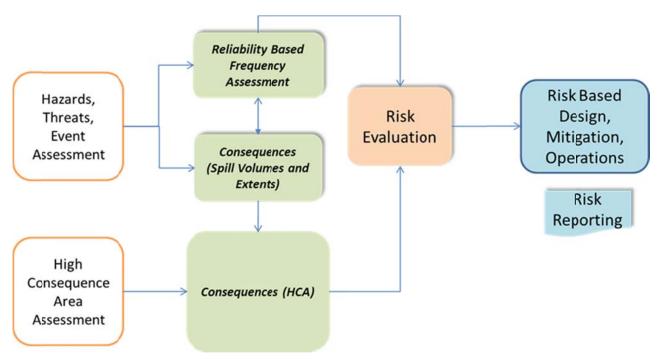


Figure 1: Overview of methodology

WorleyParsons engaged Dynamic Risk Assessment Systems Inc. (Dynamic) on behalf of Northern Gateway to develop a quantitative failure frequency model for threats (except for the geohazards discussed in section 3.2) associated with the construction and operation of the pipeline system. Historical pipeline industry failure statistics are not representative of modern pipeline designs, materials and operating practices. The threat-based approach developed by Dynamic uses actual operating data from recently constructed (modern) pipelines with similar technology and products in conjunction with reliability-based methods (where relevant to the threat being considered) to predict potential failure mechanisms.

AMEC Environment and Infrastructure (AMEC) was engaged to provide a quantitative assessment of geohazard failure frequency, building on AMEC's original work identifying geohazards for the Project.

3. HAZARDS, THREATS AND EVENT IDENTIFICATION

3.1 Pipeline System Threats

As a starting point to the Risk Assessment, Dynamic conducted a Threat Assessment Workshop in December 2011 at the Enbridge offices in Edmonton, Alberta. Enbridge operations, maintenance and pipeline integrity representatives participated in the workshop. Documentation of the threat assessment workshop was provided in the previous SQRA filing (B75-2).

The objective of the threat assessment workshop was to identify and discuss potential threats to a pipeline system considering materials, design, construction and operational variables. Through this review, the relevance and severity of each threat was assessed in the context of the proposed pipelines.

Relevant threats to the proposed pipelines were identified as follows:

- external corrosion
- internal corrosion
- materials and manufacturing defects
- construction (welding, fabrication and installation) defects
- third-party damage
- incorrect operations
- equipment failures (such as at pump stations)

The *Quantitative Failure Likelihood Assessment* report was prepared as Attachment 2 to the previous SQRA filing (B75-2).

3.2 Geotechnical Hazards and Threats

Geotechnical threats along the pipeline route were identified and initially presented in Application Volume 3, Appendix E-1 - *Overall Geotechnical Report on the Pipeline Route Revision R for the Enbridge Northern Gateway Project*, March 2010. Appendix B, Table B-1 of the Report provided a comprehensive description of the geohazards identified. Much of geotechnical work supporting the Application was used to eliminate significant hazards through routing choices.

In the response to the JRP request for additional information (B20, March 2011), Northern Gateway provided additional discussion of the threats associated with the areas of high geotechnical risk and for routing through the Rocky and Coast Mountains with areas of mass wasting. In the response, examples were provided to illustrate in more detail the process used, geotechnical issues and mitigation to be employed.

The *Report on Quantitative Geohazard Assessment* was prepared as Attachment 4 to the previous SQRA filing (B75-2) and is now updated for Route Rev V as Attachment 3 of the updated SQRA.

The geohazard evaluation considers threats within the project effects assessment area (PEAA), as well as hazards outside this corridor that could potentially affect the pipelines. For example, rock fall, avalanches, debris flows and various forms of slides are assessed to distances of sometimes several kilometres from the Route Revision V and are assessed to the height of land above the corridor where appropriate. Approximately 140 km of the route (12%) has associated geotechnical threats. The reduction in reported length from the previous SQRA results from improved accuracy in the geotechnical threat assessment.

4. FULL-BORE RUPTURE FAILURE FREQUENCY ASSESSMENTS

A summary of the methodology and results of failure frequency assessments is provided in this section.

4.1 Pipeline System Failure Frequency

The following sections summarize the methods employed and reports on the results of the failure frequency assessments undertaken by Dynamic as revised for Route Rev V.

There are two changes of note to the analysis. The first change made was to use actual threat extents rather than ascribing the maximum threat within each kilometre to the entire segment. The second change made was to use a mechanical damage model to account for increased wall thickness in the assessment of failure likelihood due to rockfall. These two changes are documented in Attachment 1 – Failure Likelihood Assessment Modifications – Route Rev. V as a follow-up to Attachment 2 of the previous SQRA filing (B75-2).

4.1.1 External corrosion

4.1.1.1 Summary of methods

The reliability approach for external corrosion employs the superimposition of an analog in-line inspection (ILI) dataset upon the design and materials for the Northern Gateway oil pipeline, factoring in tool measurement error and corrosion growth rates. The reliability analysis models how pipeline materials and design responds to a degradation process.

After a review of candidate ILI datasets, the external wall loss feature list from the 2010 ILI of Enbridge's Line 4 (Bethune Station–Regina Terminal) was selected as the appropriate analog dataset. Several factors were considered in selecting that inspection dataset to ensure that it could be established as being representative of corrosion performance anticipated for the Northern Gateway pipelines. The standards for coating types, coating specifications and cathodic protection are the same as those anticipated for Northern Gateway.

The methodology employs a probabilistic simulation approach where the growth of corrosion features can be simulated over time. From a baseline of zero, the model will predict how design parameters will affect the change in failure likelihood over time.

4.1.1.2 Results

The results for the updated SQRA show a significant increase in time to a measureable probability of corrosion failure compared to the previous SQRA due to the increase in wall thickness along the pipeline as a result of commitments made in July 2012.

The models run for external corrosion did not show any measurable probabilities of corrosion failure until after 24 years of simulated operation. In the previous SQRA this number was 11 years. The model does not incorporate inspection and maintenance.

In practice, because the pipeline will be in-line inspected several times within the 24-year period prior to the theoretical first possible failure, external corrosion threats will be effectively managed to a negligible level for the life of the pipeline. Furthermore, because of the increased resistance to rupture that is attributed to the increase in wall thickness, the theoretical potential for failure to occur by rupture (as a result of external corrosion) rather than by leak has been virtually eliminated.

4.1.2 Internal corrosion

4.1.2.1 Summary of methods

As in the approach for external corrosion, an analog ILI dataset was chosen and superimposed on the preliminary Northern Gateway design and materials, factoring in tool measurement error and corrosion growth. To ensure that the internal corrosion mechanism and corrosivity that is represented by the analog ILI dataset are representative of those that would be expected in the Northern Gateway pipelines, the following factors were examined: water content, erosion and corrosion, flow velocity, flow mode, temperature, susceptibility to under-deposit corrosion (such as solid deposition, microbiologically-induced corrosion potential, and water chemistry), and mitigation measures (use of inhibition, biocides, or pigging).

Through this process, it was determined that the ILI data obtained from Enbridge's NPS 36 Line 4 would be most representative of the corrosivity conditions expected on the Northern Gateway oil pipeline.

Approximately 10,000 km-years' (distance of pipeline inspected times the number of years of operation) worth of ILI data from the NPS 36 Line 4 was reviewed.

4.1.2.2 Results

No evidence of active internal corrosion was found.

The pipeline will operate in fully-turbulent mode, resulting in full entrainment of what little water is present (the maximum basic sediment and water tariff specification for the Northern Gateway oil pipeline is 0.5%). Therefore, as a result of these operating conditions, no significant internal corrosion is expected on this pipeline and the failure probability for this threat is negligible.

4.1.3 Materials and manufacturing defects

4.1.3.1 Summary of methods

Material defect failures are failures that are a direct result of the presence of pipe body or seam weld defects. The threat of materials and manufacturing defects does not lend itself to failure likelihood estimation using a reliability approach due to the lack of a limit state model that is supported by probability distributions for its input parameters. We therefore employed a baseline failure frequency derived from industry failure statistics, modified by an adjustment factor to account for modern pipeline materials, design, and installation practices.

Failure statistics by cause for hazardous liquid pipelines were published by Restrepo et al (2009). This report describes failure incidents for various causes and sub-causes occurring over the 170,000-mile hazardous liquid pipeline infrastructure in the U.S. from the period January 2002 to December 2005.

PHMSA data were used since they are based on a large database of pipeline failures, including both leaks and ruptures, which are derived from significant pipeline infrastructure. As such, these failure incident data have a large degree of statistical relevancy. Furthermore, the PHMSA incident failure database contains information associated with each incident that affords the ability to ensure the relevancy of the data to the pipeline being modelled and enables conclusions to be drawn relative to issues such as the magnitude of release for associated threats, and the underlying causes of failure.

4.1.3.2 Results

In Restrepo (2009), 19 failures were attributed to material defects. This equates to a failure frequency of 1.7 $\times 10^{-5}$ failures/km-year.

The most modern pipelines considered in Restrepo were constructed in the 1980s and 1990s, and had a normalized incident rate that was 15% of the pipeline infrastructure as a whole. To account for this effect, a modern construction adjustment factor of 0.15 was employed in the calculation of materials defects failure frequency. This results in a failure likelihood of 2.6×10^{-6} failures/km-year.

To establish release outcomes associated with materials defects, the PHMSA leak database (2002 to 2009) was queried for onshore, large-diameter pipelines. Two failure incidents were found; one a leak, and the

other a full-bore rupture. Therefore, based on this industry experience, an assumption was made that 50% of all materials defects failures result in full-bore ruptures, and the other 50% result in leaks.

Under this assumption, the resultant failure likelihood for a full-bore rupture would be 1.3×10^{-6} failures/km-year.

4.1.4 Construction (welding and installation) defects

4.1.4.1 Summary of methods

Construction defect failures are failures that are attributed to construction or installation defects, such as girth weld defects. The threat of construction defects does not lend itself to failure likelihood estimation using a reliability approach due to the lack of a limit state model that is supported by probability distributions for its input parameters. Therefore, the approach that was used to estimate the frequency of occurrence for this threat employs a baseline failure frequency derived from industry failure statistics, modified by an adjustment factor to account for modern pipeline materials, design, and installation practices.

In Restrepo (2009), failure incidents for various causes and sub-causes occurring over the 170,000-mile hazardous liquid pipeline infrastructure in the U.S. over the period January 2002 to December 2005 are reported. Data from this study was used to derive baseline failure rates for construction-related defects and equipment failure.

4.1.4.2 Results

In the four-year period examined, three sub-causes were related to the major threat category of construction defects failure. These construction defects failure sub-causes were as follows:

- body of pipe failures, such as dents (16)
- butt weld failures (15)
- fillet weld failures (9)

Combined, these 40 failures represent a failure frequency of 3.7×10^{-5} failures/km-year. This value was employed as the baseline failure frequency for construction defects.

A review of the construction defects failure statistics determined that the normalized rate of materials defects incidents varied by decade of construction.

The most modern pipelines that were considered in the study (constructed in the 1980s and 1990s) had a normalized incident rate that was 60% of the pipeline infrastructure as a whole. To account for this effect, a

modern construction adjustment factor of 0.60 was employed in the calculation of construction defects failure frequency, resulting in a failure likelihood of 2.2×10^{-5} failures/km-year.

Absent some large-scale outside force, failures due to construction defects such as girth weld defects, which are oriented in the plane of the principal pressure-containing stresses, fail by a leak mechanism, rather than by a rupture, and the probability for a full-bore rupture is negligible. This is consistent with the findings of a review of failure incidents from the PHMSA leak database related to construction defects.

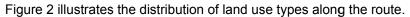
4.1.5 Third-party damage

4.1.5.1 Summary of methods

The potential for strikes and damage to any size pipeline increases with human activity such as excavation, oil and gas activity, and road works. Proximity to urban areas and settlements or to commercial operations creates an increased potential for third-party damage.

There is evidence that, even with proximity to urban or commercial areas, the threat is limited to pipeline strikes from larger machines. Chen and Nessim (1999) demonstrated that machines smaller than excavators do not significantly affect predicted failure probability.

The probability that there may be an excavator strike is dependent on both site-specific and operational factors that are combined using a fault tree approach outlined by Chen and Nessim (1999). Factors considered include the following:


- land use (defines overall frequency of excavation on pipeline ROW)
- placement frequency of pipeline marker signs
- use of buried marker tape at crossings
- third-party requirements regarding notification of intent to excavate
- pipeline patrol frequency
- depth of cover

Land use is a key factor in the third-party damage model that influences the probability of impact by an excavator.

The dominant land use is active or inactive logging operations as well as active oil and gas sites. Only 87 km (7% of the route) through the Rocky Mountains and the Coast Ranges was classified as "very remote" without any commercial or recreational land use evident. Low density residential is associated with Burns Lake while the Industrial designation is associated with the route extent near Kitimat and the terminal.

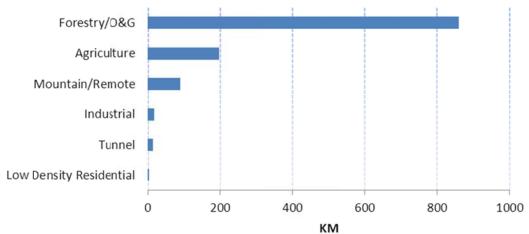
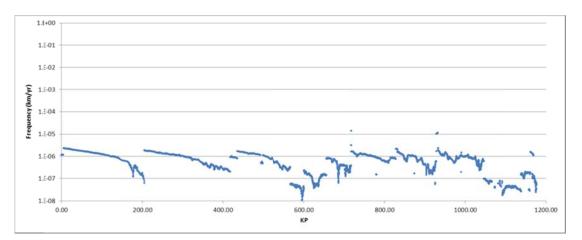
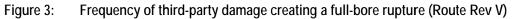


Figure 2: Land use distribution (Route Rev V)


4.1.5.2 Results


A fault tree hit-frequency model in conjunction with a probabilistic damage resistance algorithm was used to calculate the frequency of failure for defined segments along the pipeline route. This frequency was then adjusted for the percentage of incidents that would result in a full-bore rupture. The percentage for full-bore rupture from third-party damage failures are 25%, based on the mechanical damage incidents reported by Chen and Nessim (1999). Figure 3 shows the results for Route Rev V.

The results for the updated SQRA show a significant decrease in predicted failure frequency compared to the previous SQRA due to the increase in wall thickness along the pipeline as a result of commitments made in July 2012. The significant reduction in modelled failure likelihood attributed to increased wall thickness is supported by two incident databases. The PHMSA hazardous liquid incident database (2002-2009) shows no third-party failure for any onshore pipeline where the wall thickness was greater than 16 mm. This is 3.8 mm thinner than the thinnest wall thickness on the oil pipeline. The European incident database (European Gas Pipeline Incident Data Group [EGIG] 2011) shows no record of third-party failure for any wall thickness greater than 15 mm.

4.1.6 Incorrect operations

4.1.6.1 Summary of methods

Incorrect operations failures are related to a failure to follow set procedures during the operation of a pipeline. The threat of incorrect operations does not lend itself to failure likelihood estimation using a reliability approach due to the lack of a limit state model that is supported by probability distributions for its input parameters. Therefore, the approach that was used to estimate the frequency of occurrence for this threat employs a baseline failure frequency derived from industry failure statistics, modified by an adjustment factor to account for modern pipeline materials, design, and installation practices.

Estimates of failure frequency were based on operating incident data related to this threat, modified by an adjustment factor. The adjustment factor was derived from a questionnaire developed by Dynamic and administered to Enbridge Operations and other subject matter experts during the threat assessment workshop. The questionnaire is based on the *Pipeline Risk Manual*, Third Edition by W.K. Muhlbauer (2004) and incorporates elements from API RP 581 *Risk-Based Inspection Technology*. It covered topics that were intended to gauge the anticipated performance of Northern Gateway operations in terms of the causal factors of failure related to incorrect operations. The methodology for assigning the adjustment factor based on the questionnaire results was derived from API RP 581.

4.1.6.2 Results

Restrepo (1999) attributes 61 failures to incorrect operations over the 170,000-mile hazardous liquid pipeline infrastructure in the U.S. over the period January 2002 to December 2005. This equates to a failure frequency of 5.607×10^{-5} failures/km-year.

The final adjusted failure frequency was determined to be 1.828×10^{-5} failures/km-year.

To establish release outcomes associated with incorrect operations, the PHMSA leak database (2002 to 2009) was sorted for onshore, large-diameter (≥NPS 20) pipelines transporting hazardous liquids, and ten failures related to incorrect operations were found none of which created a full-bore rupture. Therefore, the probability of incurring full-bore failures related to incorrect operations is considered negligible.

4.1.7 Equipment failure

4.1.7.1 Summary of methods

Equipment failure encompasses the failure of non-pipe components and equipment, such as pumps, seals, valves and flanges. Except for block valves and other equipment along the ROW, failures associated with this threat occur at stations. The threat of equipment failure does not lend itself to failure likelihood estimation using a reliability approach due to the lack of a limit state model that is supported by probability distributions for its input parameters. Therefore, the approach that was used to estimate the frequency of occurrence for this threat employs a baseline failure frequency derived from industry failure statistics, modified by an adjustment factor to account for modern pipeline materials, design, and installation practices.

4.1.7.2 Results

Restrepo (1999) identified failure incident data for four sub-causes related to the major threat category of equipment failure as follows:

- ruptured or leaking seal or pump packing (64 failures)
- component failure (45 failures)
- malfunction of control or relief equipment (45 failures)
- stripped threads (30 failures)

Combined, these 184 failures over the four-year period over which data were collected represent a failure frequency of 1.7×10^{-4} failures/km-year. In the PHMSA database, there are no full-bore ruptures associated with this threat.

Therefore, the probability of incurring full-bore failures related to this threat is considered negligible.

4.2 Geohazards and Hydrological Threats

The following sections summarize the methods employed and reports on the results of the failure frequency assessments undertaken by AMEC. Details of the methodology and a table of results are found in Attachment 3.

The AMEC assessment was undertaken with respect to geohazard events that would have the potential to initiate a full-bore rupture event in the pipeline. A key distinction is made between events that may occur that could affect terrain in a hazard impact area versus events that may occur that could damage the pipeline itself to the point that full-bore rupture could occur.

4.2.1 Summary of methods

The approach follows the general outline of the hazard assessment methods presented by Rizkalla, Read and O'Neil in Chapter 6 of Rizkalla (2008).

The method employed uses four key index values, or factors, to provide a numerical expression that determines the susceptibility of the pipeline to particular geohazards at discrete locations.

These factors are described in the following sections.

4.2.1.1 Occurrence factor (potential for hazard)

The occurrence factor expresses the potential for a particular geohazard to occur in a specific hazard impact zone. The factor is expressed as a value from 0 to 1, with 0 being defined as "not possible", and 1 being "defined or documented occurrence".

4.2.1.2 Frequency factor

The frequency factor used in this assessment represents the inverse of the return period for the occurrence of a particular geohazard, expressed as events per year. In general, the return period considered provides an estimated frequency for all occurrences of a specific hazard at the given location, including damaging and non-damaging events.

4.2.1.3 Vulnerability factor

Vulnerability factor estimates the ability of the pipeline to withstand the imposed effects of a geohazard event. The factor ranges from 0 (no damage in the event of the hazard occurrence) to 1 (full-bore rupture in all geohazard occurrence situations).

For the purposes of this assessment, vulnerability is the fraction of geohazard occurrences at a specific location that would lead to a damaging event, and specifically, the fraction that would result in a full-bore rupture.

4.2.1.4 Mitigation factor

Geohazard mitigation will reduce either the vulnerability of the pipeline (such as deeper burial) or frequency of occurrence (such as slope stabilization). Mitigation measures will be implemented where elevated hazard levels are identified.

In this evaluation, the mitigation factor is an expression of the effects of implementing mitigation strategies that either increase the resistance of the pipeline to potential damage by a particular geohazard, or reduce the frequency of occurrence of a particular geohazard. Potential mitigation options are identified in each of the detailed geohazard process descriptions referenced later in this report.

Standard mitigation methods were identified for each identified geohazard occurrence. Further review, adjustment and implementation of mitigation options is expected throughout the design, construction and operation of the pipelines as part of the ongoing hazard and risk assessment process that will occur throughout the life of the pipelines.

4.2.1.5 Results

Due to the nature of the underlying uncertainty, assessments were made on an order-of-magnitude basis. Each geohazard was assessed as having a specific failure factor and the results are reported as a frequency per threat independent of length of pipe affected. Particularly in the mountain areas, there may be more than one geohazard that affects a particular segment.

It should be recognized that there is overlap between some of the geohazards. Specifically, the overlaps include the following groups:

- 1. Streams: Scour and Lateral Migration
- 2. Streams on alluvial fans: Avulsion, Scour and possibly Debris Flow

Thus, some of geohazards are not independent of each other. This makes a difference when the level of hazard is assessed by adding the various probabilities together where multiple hazards occur. Since the events are not independent (the same event might trigger both lateral erosion and scour), the addition of the hazards along the pipeline route as though they were independent results in a higher risk than may actually be the case.

Most of the geohazards are concentrated in the Rocky Mountains and Coast Mountains but there are also geohazards such as the crossing of the Smoky River in Alberta. Along the route, the frequency of occurrence of most of the identified geohazards fall below 10^{-7} events per year with current proposed levels of mitigation.

4.3 Summary of Results for Full-Bore Rupture Failure Frequencies

Threat or Hazard	Assessed Value (per km-year)	Comments
External corrosion	Negligible	Failure not predicted for the time period evaluated (for example, no failures are predicted to occur between regular in-line assessments).
Internal corrosion	Negligible	No evidence of internal corrosion in analog data or supporting evidence.
Materials and manufacturing defects	1.3 x 10 ⁻⁶	Significant improvement in performance with modern manufacturing processes.
Construction defects	Negligible	Associated primarily with welding defects or improper handling and installation, leading to dents. Databases employed in this assessment do not identify full-bore rupture potential associated with this threat.
Incorrect operations	Negligible	Databases employed in this assessment do not identify full-bore rupture potential associated with this threat.
Equipment failure	Negligible	Databases employed in this assessment do not identify full-bore rupture potential associated with this threat.

 Table 2:
 Threats with full-bore rupture failure frequencies that do not vary along the route

 Table 3:
 Threats with frequencies that vary along the route for a full-bore rupture

Threat or Hazard	Median Value	Highest Value	Lowest Value	Comments
Third-party damage	1.9 × 10 ⁻⁷ per km- year	2.7 × 10 ⁻⁶ per km- year	Negligible	Most areas of the pipeline are remote with low potential for third-party impacts.
Geohazards (includes hydrological)	Negligible	5.5 × 10 ⁻⁵	Negligible	Highest potential for geohazards are found in the Coast Ranges and associated with larger watercourses in Western Alberta.

4.3.1 Combined full-bore rupture frequencies

Rupture frequencies for individual threats are combined for each kilometre segment, to provide the result that is illustrated in Figure 4. The underlying dominant pattern is the frequency of full-bore rupture from a third-party damage event. This is punctuated by geohazards in localized areas, such as river crossings along the route and, in particular, for the Coast Mountain section.

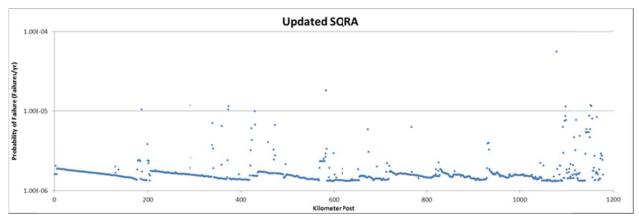


Figure 4: Full-bore rupture frequency (Route Rev. V)

A comparison of rupture frequency along the route between the previous SQRA and the updated SQRA is illustrated in the following figures. Figure 5 shows the rupture frequency for the previous SQRA (Route Rev U), and Figure 6 shows a comparison between the previous SQRA and the updated SQRA rupture frequencies in a single chart.

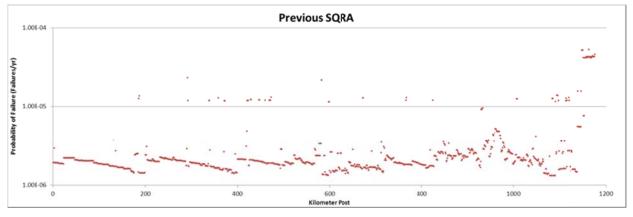


Figure 5: Full-bore rupture frequency previous SQRA (Route Rev. U)

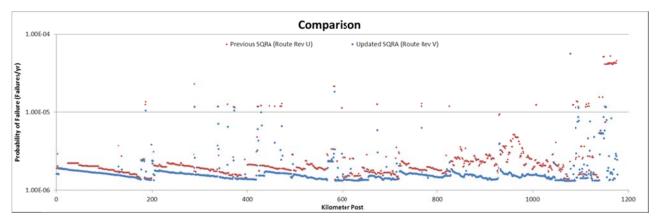


Figure 6: Rupture frequency comparison – previous SQRA to updated SQRA

4.4 Spill Return Period

A calculation was undertaken using 1,178 segments for the total length of the pipeline so that each segment was assigned a rupture frequency, based on a consideration of all threats. This calculation has identified a return period of a full-bore rupture of 464 years for the entire pipeline. This compares to a full-bore rupture return period of 240 years for the previous SQRA.

5. ASSESSING CONSEQUENCES

5.1 Full-Bore Rupture Volumes and Spill Extents

5.1.1 Volume out calculations

The potential maximum release for a full-bore rupture is calculated using the throughput volume, pipeline elevation profile, and locations of block valves to provide an estimated volume of a spill release at any point along the pipeline. The model assumes that

- a full-bore rupture event occurs with complete release of the product;
- the maximum throughput is 92,700 m3/d (583,000 bbl/d);
- a 10-minute spill detection time followed by a 3-minute valve activation time; and
- oil continues to be released based on static (gravity) drawdown on either side of the rupture location.

For the static release calculation the topographic profile determines the amount of release due to gravity drainage taking into account all natural profile constraints. The model also takes into account the "siphon effect' caused by the complete blockage of the pipeline at the valve location restraining a 'head' of product behind each natural constraint equivalent to the atmospheric pressure at the location of the breach.

Table 4 below shows a summary of changes in median potential releases from the previous SQRA to the updated SQRA derived from the Preliminary Valve Location Engineering Assessment Rev F (B190-3).

	Entire Pipeline	Alberta	British Columbia
Previous SQRA May 2012	1939	2307	1724
Updated SQRA February 2013	1601	2031	1447

Table 4: Median volume out comparison (m³)

5.1.2 Full-bore rupture spill extents

Spill modelling for Route Rev V was conducted by Applied Science Associates using their proprietary OILMAP Land model. Attachment 2 outlines the methodology and assumptions associated with this software which is unchanged from previous filings. The spill extent model for the full-bore rupture scenario uses the following assumptions and inputs:

- a maximum volume release of hydrocarbons from the spill volume model
- release of entire volume to surface

• watercourse discharges based on a maximum mean monthly discharge*

*Note: The mean discharge for each month is averaged over a number of years. This results in 12 values. The model then uses the maximum of this dataset.

Approximately 80% of these full-bore spills, if allowed to spread and move freely without any mitigation for 12 hours, are conservatively assumed to enter directly or indirectly into a watercourse or other body of water. Once the spill has entered a watercourse, the distance travelled is proportional to the watercourse speed. This is illustrated in Table 5 as updated from the previous SQRA

Modelled Spill Extent Feature	Number of Spills	% of Total
Land-based only	142	12.2
Land-based outside 1-km corridor	67	5.8
Water-transported	1022	87.8
Water-transported outside 1-km corridor	994	85.4
Water-transported outside 10-km corridor	431	37.0
Total spill extents modelled	1164	-

 Table 5:
 Full-bore rupture extent without mitigation or emergency response

In this table, water-transported includes all spills that start on land before entering water or that enter directly into a watercourse or waterbody.

5.2 High Consequence Areas

5.2.1 Definitions

In response to the JRP request of 19 January 2011, consequence areas were identified within the PEAA, the 1-km-wide zone established for much of the Project's environmental and socio-economic assessment. Other consequence areas were defined outside the PEAA (such as parks, urban areas, watercourses and water intakes) as part of the spill trajectory modelling that defined a theoretical maximum spill extent. Maps showing the consequence areas identified by Northern Gateway were included in the response (JRP 2011).

Northern Gateway has adopted the term HCA to align with Enbridge nomenclature. Consequence areas previously defined will now be referred to as HCAs.

HCAs include the following:

- officially designated protected areas that include federal and provincial parks, conservancies, and ecological and wildlife reserves
- settlements that include hamlets, villages, towns and cities
- Indian reserves
- licenced water withdrawal locations related to human consumption or other uses such as for industry and agriculture
- watercourses with species at risk, fish species with conservation concern or harvested fish species
- wildlife habitat, contains species likely to interact strongly with oil and is likely to contain species at risk
- wetlands, fens and marshes

Definitions for HCAs are included in Appendix B.

5.2.2 Consequence scoring factors

5.2.2.1 High consequence area sensitivity ranking

HCAs are ranked based on sensitivity to an oil spill event. For example, watercourses with species at risk are ranked higher than other HCAs. Similarly, although many fish-bearing watercourses are identified as HCAs, those that contain species at risk or have a conservation concern are ranked higher than other watercourses.

5.2.2.2 Volume factor

As discussed earlier, spill volumes were calculated for each kilometre of the route and vary based on a number of factors such as topography and valve placement. Spill volumes were ranked and this ranking was used to modify the consequence score.

5.2.2.3 Accessibility factor

Ease of access, either by highway or paved road close to the ROW, decreases the response time to access the spill location. Conversely, remote areas not serviced by existing roads would potentially increase the response time to the pipeline spill location. The accessibility to each kilometre segment of the pipeline is ranked according to whether the segment has nearby road access and whether the road is for all-weather or seasonal use only and this ranking was used to modify the consequence score.

The current scoring system does not account for existing logging roads likely to be upgraded to provide access during operations, and only considers the current state of access. An example is in the Morice reroute area where proximity to the existing forest service road gave many segments a high access score. The re-route is now accessible through logging roads which at the time of the updated SQRA are seasonal and have a lower score.

5.3 Consequence Scoring

A GIS was used to map and identify the intersections of spill trajectories with mapped HCAs. The output was used by the Risk Assessment Program to calculate a consequence score for each pipeline kilometre segment according to the logic in Figure 7 below.

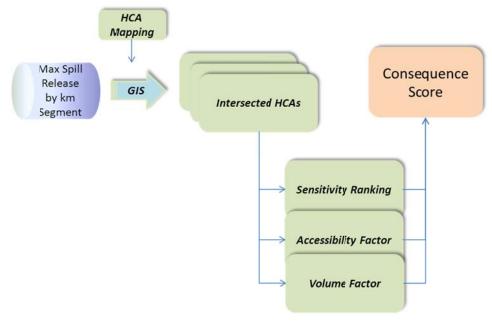


Figure 7: Consequence scoring

There are two parts to consequence scoring and ranking. The first is to derive a score for an individual pipeline segment based on the number of HCAs a spill would affect. The effect is additive. The second part of consequence scoring is to derive a ranking of HCAs based on the potential for an HCA to be intersected by trajectories from a single 1-km segment of pipeline. While probability for each segment might be relatively low, the resultant probability of an event affecting an HCA will be higher.

5.4 Consequence Scoring by Pipeline Segment

The consequence scoring has identified specific segments as well as extended zones along the pipeline which have higher consequences from a full-bore rupture.

5.5 High Consequence Area Impacts

The table below depicts higher consequence watercourses that are potentially affected by the greatest number of segments and the calculated probability for the potential to be affected by a full-bore rupture. This combined probability is a function of the probability of failure assessed for each of the individual segments. Table 6 shows the return period and also shows a comparison of the calculated return periods for these watercourses between the previous and updated SQRA.

		SQRA June 2012	SQRA January 2013
Higher consequence watercourses	Kilometre segments	Return period (years)	Return period (years)
Athabasca River	31	12,000	17,000
Smoky River	34	12,000	17,250
Missinka River	41	14,000	17,250
Morice River	14	16,000	50,000
Gosnell Creek	21	24,000	35,750
Kitimat River	29	2,200	8,250

Table 6: Comparison of higher consequence watercourses

The Kitimat River has the shortest calculated return period of full-bore rupture at this time mostly due to the geohazards in the upper Kitimat River valley. However, it is anticipated that further design and additional refinements to the mitigation proposed will reduce the failure likelihood similar to other higher consequence watercourses.

Northern Gateway undertook a more detailed assessment of the Upper Kitimat River to further identify design and mitigation measures to reduce the risk and consequence in this area (B83-8). During future design phases other higher consequence locations will similarly be assessed and an appropriate level of mitigation implemented.

5.6 Translation of Consequence Scoring into Consequence Ranking

Consequence scores were translated into a descriptive consequence rank using the categories in Table 7.

Category	Lower	Moderate	Higher
Description	A full-bore rupture from this	A full-bore rupture from this	A full-bore rupture from this
	segment affects only lower	segment affects low and	segment affects higher-
	ranked high consequence	moderate-ranked high	ranked high consequence
	areas. In this category it is	consequence areas. There	areas. Spills in this category
	likely that the spill only affects	will likely be multiple high	will also affect multiple high
	one high consequence area.	consequence areas affected.	consequence areas.

Table 7:Consequence matrix

The descriptions and criteria for the categories of Lower, Moderate and Higher were established by Northern Gateway. The dataset was then divided into the three categories based on the descriptions. While the choice of boundaries is a matter of judgement, there is a good alignment with the definitions.

6. **RISK ASSESSMENT**

6.1 Methodology

The combination of failure frequency and consequence determines the risk. In this update to the SQRA risk is determined in 2 ways – Risk Severity Classification and Risk Scoring.

Risk severity classification combines the frequency of a full-bore rupture for each segment along with consequence score for each segment using a risk matrix.

The risk matrix developed for the SQRA (see Figure 8) is intended as a way to classify pipeline segments into descriptive categories. The matrix is weighted to consequence and is less sensitive to frequency. This approach reflects a risk perception that high consequence but low probability events have more relative risk than lower consequence, more frequent events.

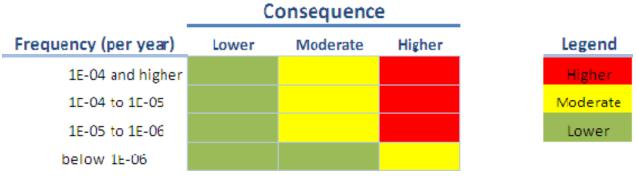


Figure 8: Risk matrix

A risk matrix is useful as a classification tool. However, it is often too coarse to be useful when comparing different levels of mitigation as is now seen with the differences in wall thickness between Route Rev V and Route Rev U. To facilitate a comparison between the previous SQRA and the updated SQRA, an additional calculation was undertaken where a risk score is calculated based on the following formula:

Risk Score = Consequence Score X Frequency

The results of this calculation are useful to provide comparisons and to identify any improvement in risk as a result of mitigation that changes the frequency or consequence for this update to the SQRA as well as any additional changes that will be undertaken during the detailed engineering phases.

6.2 Results

There is an overall decrease in risk. This is largely due to:

- Improvements in the failure frequency as a result of wall thickness changes.
- Improvements in the failure frequency as a result of further geotechnical assessments and identification of additional mitigation.
- An improvement to consequence scores by reduced spill extents as a result of additional valves.

The reduction in risk is most clearly shown, directionally by the risk scoring (product of failure frequency and consequences). The risk severity approach (Matrix) shows an 11 km decrease (17%) in high severity segments.

6.2.1 Risk severity by pipe segment

Figure 9 shows the risk severity results for the updated SQRA, the previous SQRA and a comparison of severity results. Out of 1,178 pipeline kilometre segments, 880 segments (75%) are classified as lower risk, while 53 segments (4%) classified as higher risk. The remaining 244 segments (21%) fall into the moderate risk category.

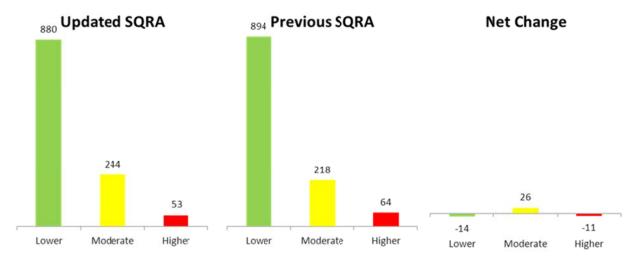


Figure 9: Risk severity for Route Rev. V and comparison with previous SQRA (Route Rev. U)

The number of higher risk segments has decreased by 11. The Morice re-route added 16 additional moderate segments. Two were from the additional length of that section. Fourteen segments are now

ranked moderate due to a change in access scoring and the intersection of potential spill extents with wetlands on the bench above the Morice River. While this re-route has created a significant buffer zone between the pipeline and the Morice that has improved the opportunity for an effective emergency response, this positive effect is not reflected in the current scoring system. The creation of a significant buffer zone between the pipeline and the Morice River is illustrated in the figure in Appendix C.

Route Rev U in the Morice re-route area was in close proximity to the existing forest service road which gave many pipeline segments a high access score. The re-route is now in proximity to a network of logging roads which at the time of the risk assessment are seasonal (not plowed in winter) and therefore are given a lower score in the updated SQRA. Potential spill extents also intersect a number of wetlands up-gradient of the Morice River that were not present in the Route Rev U corridor. The combination of the additional wetlands in the Route Rev V corridor and a lower access score has resulted in the increase of the number of moderate risk pipeline segments.

6.2.2 Risk severity by physiographic region

Figure 10 shows the proportion of risk severity classification by physiographic region. The Alberta Plateau section of BC is included with Alberta Uplands in this chart.

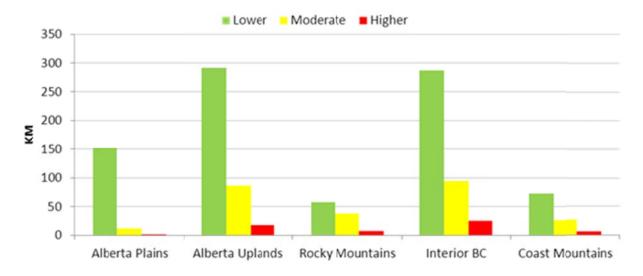
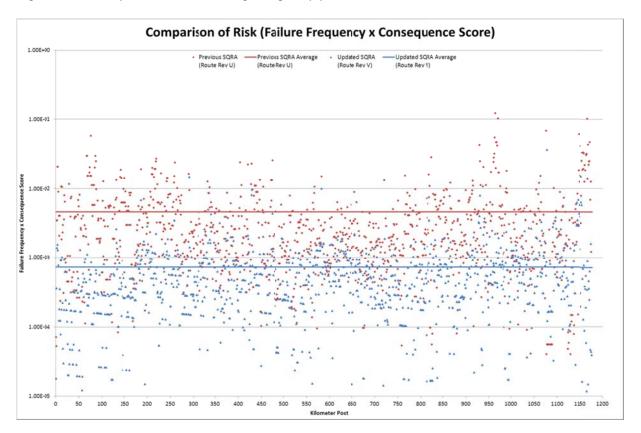


Figure 10: Risk severity classification by physiographic region (Route Rev V)



6.2.3 Risk scoring results

The average risk score (product of failure frequency and consequence score) for the previous SQRA was 4.60E-03 while the updated SQRA average risk score is now 7.25E-04 resulting in an 84% reduction in overall risk score. A comparison of the risk scoring along the pipeline route is shown in Figure 11.

Figure 11: Comparison of risk scoring along the pipeline route

7. DISCUSSION OF RESULTS

7.1 Conclusions

Northern Gateway's commitments to increased wall thickness and increased number of valves on both pipelines have resulted in a significant overall reduction of risk over the entire length of the pipeline.

The major re-route in the Morice River area that has moved the pipelines up to 3.5 km south of the Route U alignment has reduced the number of geohazards. This is reflected in the reduction of a spill return period by a factor of three for that segment. In addition, the re-route has reduced the number of spill trajectories that directly reach the Morice River and has improved the opportunity for an effective emergency response along the forest service road where spills can be intercepted before reaching the river.

Full-bore rupture frequencies associated with manufacturing defects and corrosion, both internal and external, are expected to be extremely low. The models run for external corrosion did not show any measurable probabilities of corrosion failure until after 24 years of simulated operation. In the previous SQRA this number was 11 years. In practice, because the pipeline will be in-line inspected several times as part of the Enbridge integrity management program prior to the theoretical first possible failure, external corrosion threats will be effectively managed to a negligible level for the life of the pipeline. Furthermore, because of the increased resistance to rupture that is attributed to the increase in wall thickness, the theoretical potential for failure to occur by rupture rather than by leak has been virtually eliminated.

Frequencies associated with third-party threats are expected to be very low. In reality, while the reliability analysis that was used as the basis of failure frequency prediction indicates a finite potential for failure due to third-party damage, neither the PHMSA hazardous liquids database (2002-2009) nor the EGIG incident database shows a past history of third-party damage failures in pipelines having wall thickness as high as even the thinnest wall thickness that will be used on the oil pipeline.

Geohazards in specific areas such as the Upper Kitimat Valley and watercrossings in Western Alberta represent the highest level of threat to the pipeline system. Northern Gateway will design the pipeline system based upon detailed identification of geohazards, specific engineering design, and application of Project-specific operating procedures to address these threats.

7.2 Risk-Based Approach to Design and Mitigation

A risk-based approach to design is embedded in the Enbridge engineering standards and will be a core feature of design engineering for the Project. While results generated by the risk assessment will be used to guide the final design, some mitigation measures that were identified through the risk assessment process have already been incorporated into the current design. For example, extensive studies relating to geotechnical hazard identification and routing have ensured that many hazards were avoided through the routing process. Another example is the strategic watercourse assessment process that was used to screen for environmental, geotechnical and construction risks at important watercourse crossings and to provide site-specific recommendations.

This SQRA was based on assessing risk from a full-bore rupture on the proposed oil pipeline. Northern Gateway recognizes that a release of any magnitude from the pipeline is unacceptable and will undertake additional work during the detailed design phase to apply mitigation to minimize risk of a release of any magnitude.

REFERENCES

Literature Cited:

- American Petroleum Institute (API). 2008. Recommended Practice (RP) 581. *Risk-Based Inspection Technology*, Second Edition.
- Canadian Standards Association (CSA). Z662-11, Annex B. 2011. *Guidelines for Risk Assessment of Pipelines*. Mississauga, Ontario.
- Chen, Q. and M.A. Nessim. 1999. *Reliability-Based Prevention of Mechanical Damage to Pipelines*. PRCI Project PR-244-9729.

European Gas Pipeline Incident Data Group (EGIG). 2011. 8th EGIG Report. December 2011.

- Food and Agriculture Organization (FAO). 2009 Semi-Quantitative Risk Characterization. Chapter 4 in *Risk* characterization of microbiological hazards in food.
- Joint Review Panel (JRP). Board letter: File No. OF-Fac-Oil-N304-2010-01 01 Regarding Information Request No. 8 to Northern Gateway. 01 November 2011.
- Muhlbauer, W.K. 2004. Pipeline Risk Manual: Ideas, Techniques, and Resources, Third Edition. Elsevier Science Technology. UK.
- Polaris Applied Sciences Inc. 2010. *River Control Points for Oil Spill Response Technical Data Report.* Prepared for Northern Gateway Pipelines Limited Partnership, Calgary, Alberta.
- Restrepo, C.E., J.S. Simonoff, and R. Zimmerman. 2009. Causes, Cost Consequences, and Risk Implications of Accidents in US Hazardous Liquid Pipeline Infrastructure, International Journal of Critical Infrastructure 2:38–50.
- Rizkalla, M., R.S. Read, and G. O'Neil. 2008. Geohazard Management. Chapter 6 in *Pipeline Geo-Environmental Design and Geohazard Management*. ASME.

Internet Sites:

Environment Canada Committee on the Status of Endangered Wildlife in Canada (COSEWIC 2008); (BC CDC 2008). Available at: <u>http://www.cosewic.gc.ca/eng/sct0/rpt/rpt_csar_e.pdf</u>

Northern Gateway. 2010a. Sec. 52 Application for the Enbridge Northern Gateway Project, Volume 3. May 2010. Available at: http://www.northerngateway.ca/files/application/Master_Vol%201_Final_11May10.pdf. Accessed September 2011.

Northern Gateway. 2010b. Update to Sec. 52 Application for the Enbridge Northern Gateway Project. December 2010. Available at: http://www.northerngateway.ca/files/application/NEB_Application_Update_December_2010_Vol6.pdf. Accessed: September 2011.

Northern Gateway. 2011. Northern Gateway Response to Request for Additional Information from the Joint Review Panel Session Results and Decision. 19 January 2011. Available at: http://www.northerngateway.ca/files/March%2029%20review_JRP%20response.pdf. Accessed September 2011.

APPENDIX A: ABBREVIATIONS

Abbreviation	Term
bbl/d	barrels per day
СА	consequence area
CSA	Canadian Standards Association
GIS	Geographic Information System
НСА	high consequence area
ILI	In-Line Inspection
IR	information request
JRP	Joint Review Panel
km	kilometres
km-year	kilometre years
m³/d	cubic metres per day
mm	millimetres
NEB	National Energy Board
Northern Gateway	Northern Gateway Pipelines Limited Partnership
NPS	nominal pipe size
OD	outside diameter
PEAA	project effects assessment area
PHMSA	US Department of Transportation Pipeline and Hazardous Materials Safety Administration
RAP	Risk Assessment Program
ROW	right-of-way
SQRA	Semi-Quantitative Risk Assessment
the Project	the Enbridge Northern Gateway Project
this report	this Semi-Quantitative Risk Assessment
WorleyParsons	WorleyParsons Canada Services Ltd.

APPENDIX B: HIGH CONSEQUENCE AREA DEFINITIONS

The following definitions were set out in the Northern Gateway Response to Request for Additional Information, from the Joint Review Panel Session Results and Decision, dated 19 January 2011. High consequence areas (HCAs) were mapped and included in this response.

The decision states the following guideline for HCAs:

"Consequence areas can be onshore and/or offshore including, but not limited to: wildlife reserves, occupied areas, Indian Reserves, urban areas or towns, water bodies, federal or provincial campgrounds and parks and town water intake locations."

Northern Gateway has elaborated on this guideline and has described HCAs according to the following broad categories.

Officially Designated Protected Areas

Federal and provincial protected areas that are shown as HCAs include the following:

- federal national parks,
- provincial parks (in BC, Class A, B, and C parks),
- provincial conservancies,
- provincial ecological reserves, and
- provincial wildlife reserves.

Campgrounds within federal and provincial parks and protected areas are also included as HCAs.

Settlements

Human settlements that are shown as HCAs include hamlets, villages, towns and cities, but not rural areas with sparse and isolated settlements or isolated residential parcels.

Indian Reserves

Areas that are designated by the federal government as Indian reserves under the *Indian Act* are shown as HCAs.

Water Use

Licenced sites related to human consumption and other uses (such as Industrial, agricultural) are shown as HCAs.

In Alberta, water licence data were obtained from Alberta Environment (Alberta Environment 2010). This includes both ground water and surface water intake locations for all purposes with sufficient attribute information on licences to allow Northern Gateway to segregate licenses by purpose, such as human consumption. Joint Review Panel Session Results and Decision, dated 19 January 2011 A: *Maps Showing Consequence Areas of Potential Volume Releases*, March 2011, Page 9.

In BC, water licence data were obtained from GeoBC's data discovery provincial government service (GeoBC 2011). The data included:

- BC points of diversion, such as licenced surface water intake sites for all purposes, but exclude groundwater intakes.
- Water intake extraction points for human consumption, such as for human drinking water systems under the authorization of a Health Authority in BC. The information includes both surface and groundwater sources but does not include storage or treatment facilities.

Watercourses

Watercourses are shown as HCAs if they contain species at risk (fish or amphibian), fish species of conservation concern or harvested fish species. Other watercourses are shown on the map but not designated as HCAs.

Information on fish distribution was based on field programs carried out for Northern Gateway from 2005 to 2009 (Whelen et al. 2010), as well as other available data. The presence of species at risk was a criterion for defining a fisheries HCA, because these species are of management concern and would be vulnerable to contact with oil.

Wildlife

Wildlife habitat is shown as a HCA if it meets the following conditions:

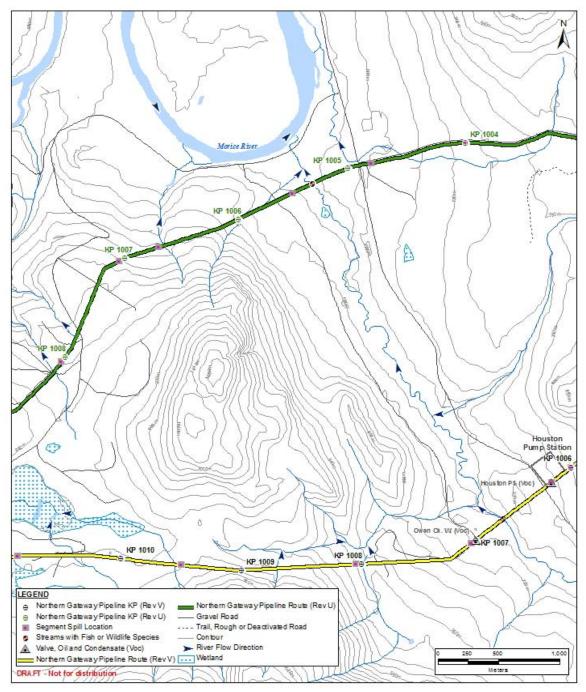
 It contains species likely to interact strongly with oil. An interaction is considered strong when the species is both likely to contact oil (should a spill occur) and to have elevated mortality rates. Amphibians are considered the group most sensitive to spills, followed by some aquatic birds that actively forage in wetlands (described more fully in the Wetlands section).

• It is likely to have species at risk as per Environment Canada's Committee on the Status of Endangered Wildlife in Canada (COSEWIC) as Endangered, Threatened, or Special Concern (COSEWIC 2008); by BC as Blue or Red listed (BC CDC 2008); or by Alberta as At Risk.

The most sensitive stream-dwelling species at risk is likely to be the coastal tailed frog (which is federally listed as Special Concern and Blue-listed in BC). Both field data and habitat suitability modelling were used to identify streams with habitat for the coastal tailed frog.

Wetlands

Fens and marshes are shown as HCAs for two reasons. First, herbaceous and bryophyte cover could be affected by contact with oil and their recovery rate may be slow. Second, these open water wetlands may be important as wildlife habitat, fish habitat or potential rare plant habitat, all of which have unique hydrological regimes.


Wildlife species at risk that use open water include horned grebe, trumpeter swan, white-winged scoter, American bittern, great blue heron, sandhill crane, yellow rail, rusty blackbird, coastal tailed frog, and western toad. Several species at risk use wetlands but forage above water and are less likely to be exposed to oil (such as Nelson's sparrow, Le Conte's sparrow and rusty blackbird). Three ecosystems (bogs, swamps and floodplains) are not considered as HCAs because they are dominated by tree or shrub species whose root structure would be less affected by an oil spill than lowland types (Walker et al. 1978).

Information on wetlands was developed as part of terrestrial ecosystem mapping (TEM) for the Project. In Alberta, the wetlands are typically mapped according to ecosite phase (Beckingham and Archibald 1996; Beckingham et al. 1996; Wheatley and Bentz 2002). In BC, wetlands are mapped according to the guide *Wetlands of British Columbia* (Mackenzie and Moran 2004), as well as the Ministry of Forest's BEC *Field Guides* (Banner et al. 1993a, 1993b; DeLong 2003, 2004; Delong et al. 1990, 1993, 1994). Fens and marshes were mapped in the PEAA from 2008 to 2009 and following standards for TEM in BC (RIC 1998).

APPENDIX C: BUFFER CREATED BY MORICE RE-ROUTE

APPENDIX D: LIST OF ATTACHMENTS

This appendix lists attachments to this document.

No.	Description	File name	Revision
1	Failure Likelihood Assessment Modifications - Route Rev. V	Dynamic Risk, January 2013	Final
2	Simulations of Hypothetical Oil Releases from the Northern Gateway Pipeline - Route Rev. V	ASA January 14, 2013	Final
3	Report on Quantitative Geohazard Assessment – Route Rev. V	AMEC File: EG0926008 2100 800	Final

resources & energy

E N B R I D G E NORTHERN GATEWAY PIPELINES

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

Attachment 1:

Failure Likelihood Assessment Modifications - Route Rev. V

Northern Gateway Pipelines Limited Partnership

Failure Likelihood Assessment Modifications for Route Rev. V

January 18, 2013

Prepared by:

Risk Assessment • Pipeline Integrity • Engineering • GIS • Data Management & Software

Suite 208, 1324 – 17th Avenue S.W. Calgary, Alberta, Canada T2T 5S8 Phone: (403) 547-8638 Fax: (403) 547-8628 Web: www.dynamicrisk.net

Table of Contents

1.		INTRODUCTION	3
2.		BACKGROUND	4
3.		DESCRIPTION OF ENHANCEMENTS TO FAILURE LIKELIHOOD APPROA	CH5
	3.1.	INCREASED RESOLUTION IN SEGMENTATION OF RESULTS	5
	3.2. Faili	CONSIDERATION OF EFFECT OF INCREASED WALL THICKNESS IN EVALUATION OF ROCKF	

1. Introduction

The Semi-Quantitative Risk Assessment (SQRA) is being re-issued so that it is specific to Route Rev. V. Supporting the re-issue of the SQRA, the quantitative failure likelihood analysis was repeated using the approach documented in Attachment 2 of the SQRA document previously filed in June 2012 (B75-2). The purpose of this report is to document the changes that were made in the quantitative failure likelihood approach.

2. Background

The approach described in Attachment 2 of B75-2 provides a mechanism for estimating normalized failure frequency, expressed in units of failures/km.yr, with 'failures' being further subdivided into 'leaks' and 'ruptures'. This process is undertaken for each threat, so that the results can then be combined to provide a normalized failure frequency value for all threats combined.

3. Description of Enhancements to Failure Likelihood Approach

The quantitative failure likelihood approach described in the updated SQRA document was used for the Route Rev. V alignment as an update to the approach used for the Route Rev. U alignment. Further enhancements to the approach included:

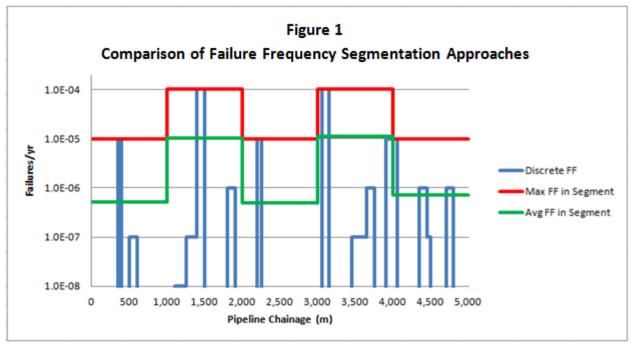
- Increased resolution in segmentation of results;
- Consideration of the effect increased wall thickness and its influence on resistance to failure by rockfall; and,
- Consideration of revised geohazard assessment, as is documented separately¹

These enhancements are described in further detail in the Sections below.

3.1. Increased Resolution in Segmentation of Results

Failure frequency estimates that were generated for the purposes of the previous SQRA document (B75-2) employed a highly-conservative segmentation process that significantly over-represented values of failure frequency for each 1 km section. The failure frequency and spill return period estimates for pipeline segments that were composed of multiple 1 km sections were correspondingly highly conservative values. The reason for the conservatism was due to the way that failure likelihood estimates were initially generated for each 1 km section from failure frequency values for each dynamic segment. A dynamic segment is defined as a change in any parameter that forms the basis of a unique estimate of failure frequency. These dynamic segmentation parameters are:

- Operating Pressure;
- Wall Thickness; and,
- Uniquely Identified Geotechnical / Hydrological Threat


Each individual 1km segment is typically composed of multiple dynamic segments. For the purposes of generating failure frequency estimates in the previous SQRA document (B75-2), a rule was adopted that failure frequency value associated with the highest-value dynamic segment would apply to the entire 1 km segment. This practice resulted in significant over-representations of failure frequency, since the failure frequency values that might exist for only a few metres would be applied against an entire 1 km segment.

A much more accurate and representative means of expressing failure frequency for each 1 km segment is to length-average the failure frequency values associated with each dynamic segment within each 1 km segment. The difference between the two approaches is illustrated in Figure 1.

¹ "Report on Quantitative Geohazard Assessment Proposed Northern Gateway Pipelines Route Revision V (Revised January 23, 2013).

In Figure 1, the blue line (labelled 'Discrete FF') represents the failure frequency plot for a given threat at the finest resolution available (i.e., at the dynamic segment level). The red line represents the failure frequency plot that is obtained using a business rule that requires that the maximum failure frequency in any dynamic segment be reported for each 1 km section. This was the approach that was adopted in the previous SQRA (B75-2). The green line represents the failure frequency plot that is obtained using a business rule that requires that the length-averaged failure frequency over each 1 km section be reported for that section. This is the approach that was adopted in the updated SQRA.

3.2. Consideration of Effect of Increased Wall Thickness in Evaluation of Rockfall Failure Frequency

Increased wall thickness is an effective means of mitigating against mechanical damage threats. This effect of increased resistance to mechanical damage is illustrated by the limit state equations for gouge-in-dent and puncture, as reported in Equations 6 and 16 of Attachment 2 of B75-2. It is also reflected in industry failure statistics. The EGIG report on pipeline failure incidents, which reports failures due to 3rd Party Damage as a function of wall thickness illustrates that there are no 3rd Party Damage incidents in pipelines where the wall thickness exceeds 15mm.²

 ² 8th Report of the European Gas Pipeline Incident Group, Doc. Number EGIG 11.R.0402 (version 2), December 2011.

The effect of increased wall thickness was reflected in the re-evaluation of failure frequency due to the 3rd Party Damage when Northern Gateway increased its wall thicknesses, however until now, no similar consideration was given to the evaluation of the threat of failure due to rockfall, even though the failure mechanism associated with rockfall is related to mechanical damage. In order to more accurately reflect the mechanical damage mitigation effect of increased wall thickness, a 'Wall Thickness Mitigation Factor' was derived and applied against the threat of failure by rockfall. This mitigation factor was developed using the reliability methods reported for gouge-in-dent and puncture failure mechanisms in Section 2.3.2 of Attachment 2 of B75-2. The mitigation factor was defined as the ratio:

Probability of Failure, Given and Impact (New Wall Thickness)Probability of Failure, Given and Impact (Previous Wall Thickness)

In the above relationship, 'Probability of Failure, Given an Impact' was calculated using the mechanical damage reliability model reported in Section 2.3.2 of Attachment 2 of the previous SQRA (B75-2). In this respect, the mechanical damage reliability model was used as a means of quantitatively expressing the resistance to failure by mechanical damage, and the rockfall failure frequency prior to the increase in wall thickness was used as a baseline against which the post-wall thickness-increase failure frequency values were derived.

resources & energy

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

Attachment 2:

Simulations of Hypothetical Oil Releases from the Northern Gateway Pipeline – Route Rev. V

REPORT

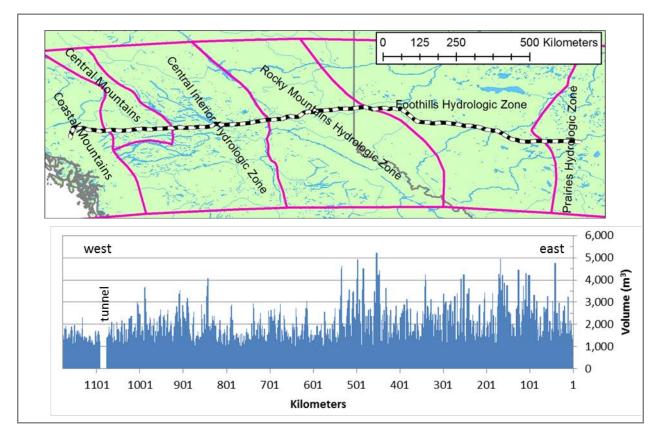
Simulations of Hypothetical Oil Releases from the Northern Gateway Pipeline – Route Rev. V

ASA Project Number: 2011-298

PREPARED FOR: WorleyParsons Canada

AUTHOR: Chris Galagan

DATE SUBMITTED 14 January, 2013



Introduction

The OILMAP Land model system was used to simulate releases of oil from points along the proposed Northern Gateway Pipeline route (Rev-V). This report describes the OILMAP Land model system, documents the model inputs, calculation methods and model outputs from simulations of oil spills from the Rev-V pipeline route. The model results are delivered separately as ESRI shape files.

Spill Scenarios

The OILMAP Land model was used to simulate 1164 individual spills along the length of the pipeline route Rev-V. Figure 1 shows the pipeline route with the hydrologic zones overlaid, and the release volumes. The oil release volumes range from 986 to 5,227 m³, with a median volume of 2,104 m³. The spill point locations and volumes were provided by WorleyParsons Canada on 6 December, 2012.

Figure 1. Map showing the pipeline route (above) with hydrologic zones and graph of the oil spill volumes used in the model simulations.

The model was allowed to run 12 hours from the start of each spill so that the resulting spill pathways are time constrained. It is possible for any of these spills to stop flowing prior to 12 hours if all of the spilled volume has been released and this volume is accounted for. For example, if an individual release duration is 1 hour and the oil flows over land and pools in a depression in the land surface in less than 12 hours, the resulting pathway provides the

maximum predicted oil path. In this case the oil cannot move any farther because the entire spill volume is contained on land. On the other hand, if the spill immediately enters a river and travels downstream, it is stopped after 12 hours, even if there is oil available in the river to continue on downstream.

Environmental Conditions

River flow used for all of the modeling corresponds to the maximum monthly discharge condition. Maximum monthly discharge was computed using historical data from gauges within each of the hydrological zones encompassing the pipeline route (Figure 1). The maximum monthly discharge is defined as the highest of the mean monthly flows recorded at each gauge for the entire period of record. This flow condition frequently corresponds to the spring runoff period. Using the maximum monthly discharge data derived from the stream gauges, AMEC (Monica Wagner, personal communication) determined the relationship between the drainage area and flow for each gauged stream.

$$Q = a * DA^b$$

Q = stream flow DA = drainage basin area

ASA used this relationship and the values for a and b listed in Table 1 to determine stream flow for every stream reach of a known drainage area. Drainage areas were determined using the Canadian Digital Elevation Data (CDED).

Table 1. Flow-drainage area relationships for maxi	mum monthly flow conditions provided by
AMEC (Monica Wagner, July, 2012).	
	Most Monthly Flow

			Max Mon	thly Flow
			Q=a*DA ^b	
Hydrologic Zone	Maximum Flow Month	Applicable Drainage Areas (km ²)	a	b
Prairies	April	All	0.0006	0.9665
Foothills	April	0 - 450	0.0093	0.9626
	May	> 450	0.0022	1.1978
Rocky Mountains	May	0 - 1,000	0.0341	1.0388
	June	> 1,000	0.0154	1.1524
Central Interior	May	0 – 1000	0.0815	0.7947
	April	> 1000	0.0257	0.9691
Central Mountains	June	All	0.0634	0.9808
Coastal Mountains	June	All	0.4887	0.8111

The mean annual flow for each stream reach was determined using the same methodology but with annual mean flow data from selected stream gauges. Table 2 provides the drainage area and flow relationships corresponding to the mean annual flow condition.

 Table 2. Flow-drainage area relationships for mean annual flow conditions provided by AMEC (Monica Wagner, July, 2012).

	Mean Ann	ual Flow
	Q=a*	DA ^b
Hydrologic Zone	а	b
Prairies	0.00060	1.1349
Foothills	0.00110	1.2252
Rocky Mountains	0.0117	1.0967
Central Interior	0.00930	0.960
Central Mountains	0.0242	1.0124
Coastal Mountains	0.3329	0.7797

RPS ASA used the method developed by Jobson (Jobson, 1996) to calculate current speed for each stream reach within the pipeline drainage. Jobson looked at time of travel data from 980 individual reaches in 90 different rivers in the U.S. having a range of size, stream bed slope and geomorphic type. He developed a regression equation that can be used to calculate current speed if drainage area, slope, mean annual and maximum monthly flow are known:

$$V_p = 0.094 + 0.0143 \times (D'_a)^{0.919} \times (Q'_a)^{-0.469} \times S^{0.159} \times \frac{Q}{D_a}.$$

 V_p = current speed D_a = drainage area S = reach slope Q_a = mean annual discharge Q = maximum monthly discharge

$$D'_{a} = \frac{D_{a}^{1.25} \times \sqrt{g}}{Q_{a}} \qquad \qquad Q'_{a} = \frac{Q}{Q_{a}}.$$

Using the data analyzed by Jobson, the equation for V_p has an R² value of 0.70 and an RMS error of 0.157 m/s.

Calculating the Spill Pathways

The OILMAP land model uses a gridded representation of the land surface to determine the overland pathway of the spilled liquid as it flows down slope. Land elevation data for this purpose were obtained from the Canadian Digital Elevation Data (CDED) web site (<u>www.geobase.ca</u>). For oil in any single grid cell, the model moves the spill to the lowest of the 8 neighboring cells using the standard D8 method (O'Callaghan and Mark, 1984). This process is repeated to determine the downslope spill pathway. The individual CDED elevation grid cells measure 24 meters by 14 meters and small features such as ditches that steer oil are not represented.

Streams and other surface water features are defined using the National Hydro Network (NHN) data. Streams are single line features with a single width and no depth. Lakes/ponds/reservoirs are polygons with no depth defined.

Oil Properties

The oil used in the modeling is synthetic crude with the properties listed in Table 3.

API	Density at 25° C (g/cm ³)	Viscosity at 25° C (cP)
30.6	0.8669	0.4667

Table 3. Properties of the oil used in the modeling.

Description of the OILMAP Land Model

The OILMAP Land model is used to determine the overland and downstream pathways of spills from pipelines where data describing the terrestrial and surface water environments are as described above.

Overland Transport

Starting at the spill location, the model determines the steepest descent direction in the eight adjacent cells of the elevation grid. The oil moves to the neighboring cell with the lowest elevation. This process repeats successively until a flat area or depression is reached. In a depression area, the depression is filled before the spill continues down slope. Overland flow of the oil continues until the path reaches a stream or other surface water feature, or until the total spill volume is depleted from loss to the land surface and evaporation. The final spill path forms a chain of channels and pooled sections. A channel section is where no pooling occurs and the width of the spill path is dependent on the slope of the land surface. A pooled section consists of an area of one or more contiguous elevation grid cells that form a depression in which the spilled product has collected.

As the oil flows down slope, oil mass is lost through adhesion to surface vegetation, puddle formation on the ground surface and pooling in depressions. The rate of oil loss to these processes is dependent primarily on the physical characteristics of the land surface (vegetation type, land cover, soil type, slope). Different land cover types retain different amounts of oil as a spill passes over the land surface. The volume of oil retained along the oiled path from the adherence and puddle processes is defined as the path length times the path width times a constant oil thickness. The oiled path width is related to the slope of the land surface as determined from the elevation grid.

The constant oil loss thickness is specified for each land cover type defined in a land type grid that matches the size and extent of the elevation grid. Each cell in the land type grid is assigned an oil loss thickness so that as oil traverses the land the loss to each land type is calculated. This loss value varies between 2 and 200 millimeters for the range of land cover types typically encountered. These oil loss rates are based on surface hydrologic studies (ASCE 1969, Kouwen 2001, and Schwartz et al 2002) for surface water runoff modeling.

Separate from adhesion and puddle losses, oil lost to pooling on the land surface is the volume of oil retained within depressions defined in the land elevation grid. The oil lost as oil traverses the land is the sum of adhesion, puddle formation, pooling in large depressions and evaporation.

The predicted overland travel path is only as good as the elevation data. Even with high resolution gridded data, features that steer oil are only captured with a site visit and field mapping. Land spill model results should be viewed with a clear understanding of how accurately the elevation data capture the land features over which the oil travels.

Water Transport

Once the spilled oil enters a stream it is transported through the stream network at a velocity defined by the speed and direction of surface currents in each stream reach. While in the stream network, oil is lost by adhesion to the shore and by evaporation to the atmosphere. A maximum total travel time and stream velocity control the distance traveled downstream. Travel times are typically defined in spill response plans as the time required to respond to and stop a catastrophic release. oil is modeled to travel downstream until all available oil is lost to the shoreline or to evaporation, or the simulation reaches the maximum downstream travel time.

When oil encounters a lake the slick will spread across the lake surface until it covers the entire lake or it reaches a minimum thickness. If the minimum thickness is reached, spreading stops and the oil travels no farther. The minimum thickness can be varied according to the oil type. If oil covers the lake surface before reaching the minimum thickness it continues down any outflowing streams at the surface current velocity specified for the stream reach.

Oil loss to stream shorelines occurs as oil is transported downstream by surface currents. Five different stream shore types are defined, each with a specified bank width and oil loss thickness. Oil volume lost to the shoreline is calculated as the length of the shoreline oiled times the specified bank width times the oil thickness. Typical shoreline loss values for synthetic crude are listed below.

Shore Type	Shore Width (m)	Oil Thickness (mm)	Hydrologic Zone(s)
Bedrock	0.5	1	
Gravel	1	2	Rocky Mountains Central Mountains
Sand/Gravel	2	3	Foothills Central Interior Coastal Mountains
Sand	5	4	Prairies
Marsh	20	6	

Because streams are defined by single lines with a fixed width, braided streams and streams with numerous islands and sand bars are underrepresented in terms of the length of shoreline available to accumulate oil. In addition, the model routes oil along a single stream pathway even through areas of braided streams with bifurcated channels. The model follows the stream designated in the NHN dataset as the primary pathway.

Aside from the processes described above, the OILMAP Land model does not account for a number of oil fate processes that occur when oil travels down rivers. These processes include: collection of oil in quiescent pools which may exist in meander bends or in other places where currents are slow enough for oil to collect; entrainment of oil into the water column by turbulent mixing present in rapids or spillways; adherence of small oil droplets to fine sediment particles

that potentially sink to the bottom and accumulate in river bed sediment; creation of tar balls and tar mats from weathered oil that may collect on the river bed; sequestration of oil to the groundwater or hyporheic zone below the river bed. All of these processes are important in determining the ultimate fate of the spilled oil, but they are beyond the capabilities of the data utilized and the OILMAP Land model.

Evaporation

Oil evaporates as it spreads over land or water. The most volatile hydrocarbons (low carbon number) evaporate most rapidly, typically in less than a day and sometimes in under an hour (McAuliffe, 1989). The spill model uses the Evaporative Exposure model of Stiver and Mackay (1984) to predict the volume fraction evaporated.

Several simplifying assumptions are made that directly affect the amount of oil predicted to evaporate. In general, the rate of evaporation depends on surface area, oil thickness, and vapor pressure, which are functions of the composition of the oil, wind speed and air and land temperature. The mass of oil evaporated is particularly sensitive to the surface area of the spreading oil and the time period over which evaporation is calculated. On the land surface, area and evaporation time are functions of the slope defined by the elevation grid. Steeper slopes cause the oil to travel faster but along a narrower path, while a lower slope slows the speed of advance and increases the width of the oiled path.

In the stream network, oil surface area and evaporation time are functions of the stream surface area (total length of the oiled stream times the fixed width) and stream velocity. oil loss to evaporation ceases once the total oil spill volume is released and overland travel stops, or if oil enters a stream, once the stream maximum travel time is reached and flow in the stream network stops. In reality, oil will continue to evaporate from the ground or water surface, increasing the total evaporation amount. This conservative calculation of evaporative loss is consistent with a worst-case scenario approach.

Model Results

The pipeline route was broken out into six separate segments (shown in Figure 2) for the purposes of modeling the spills. The output from the model for each pipeline segment is provided in separate polygon shape files. The files are named using the spill scenario name (Enb1a, Enb1b, etc.) which correspond to the pipeline segments shown. The shape files provided include polygons depicting the entire overland and downstream oil pathways. The files are named 'Enb1a_Final.shp', etc. A second set of shape files using the same naming convention contain points which indicate the travel times for oil in streams.

Figure 2. Pipeline segments used in the application of the OILMAP Land model.

The oil mass balance for all spills of oil from the Rev-V pipeline is summarized in Table 4.

Location		Volume (m ³)
	Minimum	0.0
On Land	Maximum	4,489
	Mean	263
	Minimum	0
Evaporated	Maximum	41
	Mean	4
	Minimum	0
In Rivers	Maximum	5,220
	Mean	1,708
	Minimum	0
In Lakes	Maximum	4,757
	Mean	127

Table 4. Oil mass balance for all oil sp
--

References

- American Society of Civil Engineers. 1969. Design and Construction of Sanitary and Storm Sewers. Manuals and Reports of Engineering Practice, No. 37, New York.
- Jobson, H.E., 1996. Prediction of Traveltime and Longitudinal Dispersion in Rivers and Streams: US Geological Survey Water Resources Investigations Report 96-4013, 56 pp.
- Kouwen N., 2001, WATFLOOD/SPL9 Hydrological Model & Flood Forecasting System, Department of Civil Engineering, University of Waterloo, Waterloo, Ontario, Canada.
- McAuliffe, C.D., 1989. The weathering of volatile hydrocarbons from crude oil slicks on water. Proceedings of the 1989 oil Spill Conference. San Antonio, TX. pp. 357-364.
- O'Callaghan, J. F., and D. M. Mark, The extraction of drainage networks from digital elevation data, *Computer Vision, Graphics and Image Processing*, 28, 323–344, 1984.
- Stiver, W. and D. Mackay, 1984. Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environmental Science and Technology, 18:834-840.
- Schwartz, M, L. Bromwell, J. Kiefer, W. Reigner, W. Winkler, and B. Manley, 2002, "Hydrodynamic Simulations of Restoration Alternative 1 Tenoroc Fish Management Area", Stormwater Management Conference, Orlando, Florida, December 4-6, 2002.

resources & energy

E N B R I D G E NORTHERN GATEWAY PIPELINES

NORTHERN GATEWAY PIPELINES LIMITED PARTNERSHIP ENBRIDGE NORTHERN GATEWAY PROJECT SEMI-QUANTITATIVE RISK ASSESSMENT FEBRUARY 2013 UPDATE Route Rev V

Attachment 3: Report on Quantitative Geohazard Assessment - Route Rev. V

AMEC Environment & Infrastructure, a Division of AMEC Americas Limited Suite 600 – 4445 Lougheed Highway, Burnaby, BC Canada V5C 0E4 Tel +1 (604) 294-3811 Fax +1 (604) 294-4664 www.amec.com

Report on Quantitative Geohazard Assessment Proposed Northern Gateway Pipelines Route Revision V (Revised January 23, 2013)

Submitted to:

Northern Gateway Pipelines Inc. Calgary, Alberta

Submitted by:

AMEC Environment & Infrastructure, a Division of AMEC Americas Limited Burnaby, BC

January 23, 2013

AMEC File: EG0926008 2100 800

Document Control No.: 1170-RG-20130110

TABLE OF CONTENTS

Page

EXE	CUTIVE SUMMARY	.1
1.0	INTRODUCTION 1.1 Purpose and Nature of a Geohazard Assessment 1.2 Organization	.6
2.0	 KEY DEFINITIONS AND CONCEPTS 2.1 Geohazard. 2.2 Risk 2.3 Qualitative, Semi-Quantitative and Quantitative Assessments 2.4 Hazard Impact Zone 2.5 Locations Assessed. 2.6 The Necessary Role of Engineering Judgement in Geohazard Assessment. 2.6.1 Engineering Judgement 2.6.2 Expert Panel 2.6.3 Order-of-Magnitude Approach. 2.7 Susceptibility Assessment 2.8 Occurrence Factor 2.9 Frequency 2.10 Vulnerability Factor 2.11 Mitigation Factor 2.12 Considerations for the Work 	.7 .7 .8 .8 .8 .9 .9 .9 10 10 10
3.0	PREVIOUS GEOHAZARD ASSESSMENT FOR THE PROJECT	14
4.0 ASS	GEOHAZARD ASSESSMENT PROCESS USED TO SUPPORT PIPELINE RIS SSMENT	15 15 17 17
5.0	RESULTS OF GEOHAZARD ANALYSES	18
6.0	LIMITATIONS AND CLOSURE	19
REF	RENCES	20

Northern Gateway Pipelines Inc. Quantitative Geohazard Assessment Proposed Northern Gateway Pipelines January 23, 2013

TABLE OF CONTENTS

Page

LIST OF TABLES

 Table 1:
 List of Geohazards Assessed
 16

LIST OF APPENDICES

APPENDIX A Ranking Sheets for each Geohazard Assessed APPENDIX B List and Details of Geohazards APPENDIX C Mitigation Summary

IMPORTANT NOTICE

This report was prepared exclusively for Northern Gateway Pipelines Inc. by AMEC Environment & Infrastructure, a wholly owned subsidiary of AMEC Americas Limited. The quality of information, conclusions and estimates contained herein is consistent with the level of effort involved in AMEC services and based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended to be used by Northern Gateway Pipelines Inc. only, subject to the terms and conditions of its contract with AMEC. Any other use of, or reliance on, this report by any third party is at that party's sole risk.

EXECUTIVE SUMMARY

This report presents the results of an expanded quantitative geohazard assessment to identify and characterize geohazards that could potentially affect the proposed Northern Gateway Pipeline Project oil and condensate pipelines proposed to be constructed between Bruderheim, Alberta and Kitimat, British Columbia. The geohazard assessment discussed in this report is part of a wider hazard and risk assessment for the pipelines and other infrastructure being carried out by others and the results are intended to be incorporated into an overall pipeline risk assessment.

Geotechnical threats along the pipeline were identified and initially presented in Application Volume 3, Appendix E-1 - Overall Geotechnical Report on the Pipeline Route Revision R for the Enbridge Northern Gateway Project, March 2010. Appendix B, Table B-1 of the application provided a comprehensive description of the geohazards identified. Much of geotechnical work supporting the application was used to eliminate many significant hazards through routing choices.

In the response to the JRP request for additional information (B20, March 2011), Northern Gateway provided additional discussion of the threats associated with the areas of high geotechnical risk and for routing through the Rocky and Coast Mountains with areas of mass wasting. In the response, examples were provided to illustrate in more detail the process used, geotechnical issues and mitigation to be employed.

The Report on Quantitative Geohazard Assessment was prepared as Attachment 4 to the SQRA filing in March 2012 (B69-6) and is now updated in the present revision of the report for Route Rev V.

This Quantitative Geohazard Assessment expands report on the qualitative geohazard assessment presented in the Overall Geotechnical Report but excludes discussion of the consequences since they are discussed within the overall pipeline risk assessment. The present geohazard assessment was undertaken with respect to a Loss of Containment (LoC) event. The assessment in the Overall Geotechnical Report included definition of 170 individual geohazard occurrences within 13 categories which were incorporated into the present updated work as applicable. However, it should be noted that the present report work deals strictly with events with the potential for loss of containment and thus some of the geohazards in the previous work, such as wind erosion, do not appear in the present assessment.

The present assessment was made on the basis of the Revision V route and all kilometre stations have been revised to refer to that route. A previous version of this report was based on route revision U and was filed April 30, 2012. The present report also includes any recently identified geohazards, updates of geohazards based on recent fieldwork and additional LiDAR as well as some clarification of the text.

The hazards assessed included mass movement events (deep-seated slides, shallow to moderately deep slides, and rockfall), stream flow and erosion events (scour, lateral migration, avulsion and debris flow), avalanches, and seismically triggered movements such as lateral spreading. No rock topples, rock avalanches, or sackung failures that would affect the proposed route have been identified and so are not included in the foregoing list. The locations of all geohazards were reassessed relative to the previous work and were defined to resolutions of up to 20 m along the route. Start and end kilometre locations were assessed relative to the route stationing. A total of 363 geohazard occurrences were defined.

The assessments of certain hazards were not limited to the Project Assessment Corridor, which is typically 1 km wide. Hazards outside this corridor that could potentially affect the pipeline were assessed as far from the Rev V centerline as necessary to make sure that all applicable geohazards were included. Thus, rockfall, avalanches, debris flows and various forms of slides were assessed to distances of sometimes several kilometres from the Rev V route and were typically assessed to the height of land. Assessments of other hazards also extended outside the corridor as necessary, for example, lateral erosion and avulsion.

A susceptibility assessment approach was used as defined in Rizkalla (2008) within the framework of a quantitative hazard assessment to determine a predicted likelihood of failure. The method developed for this project uses four key index values, or factors, to provide a numerical expression to estimate the susceptibility of the pipeline to particular geohazards at discrete locations.

In this study, the following definitions were used:

Risk = Probability of Hazard Occurrence x **Vulnerability** of the Pipeline to the Hazard x **Consequences**

Probability of a geohazard causing a LoC event = **Probability** of Hazard Occurrence x **Vulnerability** of the Pipeline to the Hazard

For the purposes of this assessment, the probability of pipeline loss of containment due to discrete geohazards has been approximately assessed based on expert judgement including input from an expert panel. Results are expressed as events/year per linear section of pipeline. Because the results are expressed quantitatively, the assessment is considered to be quantitative and has been based on judgement.

As defined above, susceptibility is the product of the factors for occurrence, frequency, vulnerability and mitigation. Susceptibility to a loss of containment (FLOC) event expressed in terms of events per year at any location or segment (i) is expressed numerically as:

Susceptibility =
$$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$$

A similar form of this method was used for geohazard assessment of the Mackenzie Valley Gas Pipeline Project, previously reviewed by the National Energy Board, and was accepted as a suitable approach in the NEB's Reason for Decision (National Energy Board, 2010).

It should be recognized that the results of the assessment are conditional on the application of the proposed or equivalent mitigations. The mitigations have been selected in accordance with standard and appropriate pipeline construction practices. The mitigation strategies and locations shown are preliminary and will be further considered and refined at the detailed engineering stage of the Project. A summary of the mitigation methods considered for each defined geohazard is contained in the report appendices.

The results of the geohazard analyses are summarized relative to the various geohazards as well as individual description sheets for each individually identified hazard listed sequentially by Rev V kilometre post.

The frequency of loss of containment is presented for each specified hazard impact location relative to the Rev V chainage. The mitigated frequency values typically ranged from 1×10^{-10} to 1×10^{-4} events/year.

1.0 INTRODUCTION

AMEC Environment & Infrastructure (AMEC), a division of AMEC Americas Limited, was retained by Northern Gateway Pipelines Inc. (Northern Gateway) to provide geotechnical engineering services in support of geohazard assessments for the proposed Northern Gateway Pipeline Project route. The purpose of the geohazard assessments were to identify and characterize geohazards that could potentially affect the planned oil and condensate pipelines proposed to be constructed between Bruderheim, Alberta and Kitimat, British Columbia.

Geotechnical threats along the pipeline were identified and initially presented in Application Volume 3, Appendix E-1 - Overall Geotechnical Report on the Pipeline Route Revision R for the Enbridge Northern Gateway Project, March 2010. Appendix B, Table B-1 of the application provided a comprehensive description of the geohazards identified. Much of geotechnical work supporting the application was used to eliminate many significant hazards through routing choices.

In the response to the JRP request for additional information (B20, March 2011), Northern Gateway provided additional discussion of the threats associated with the areas of high geotechnical risk and for routing through the Rocky and Coast Mountains with areas of mass wasting. In the response, examples were provided to illustrate in more detail the process used, geotechnical issues and mitigation to be employed.

The Report on Quantitative Geohazard Assessment was prepared as Attachment 4 to the SQRA filing in March 2012 (B69-6) and is now updated in the present revision of the report for Route Rev V.

This Quantitative Geohazard Assessment expands report on the qualitative geohazard assessment presented in the Overall Geotechnical Report but excludes discussion of the consequences since they are discussed within the overall pipeline risk assessment. The present geohazard assessment was undertaken with respect to a Loss of Containment (LoC) event. The assessment in the Overall Geotechnical Report included definition of 170 individual geohazard occurrences within 13 categories which were incorporated into the present updated work as applicable. However, it should be noted that the present report work deals strictly with events with the potential for loss of containment and thus some of the geohazards in the previous work, such as wind erosion, do not appear in the present assessment.

The present geohazard assessment was undertaken with respect to a Loss of Containment (LoC) event. The geohazard assessment has considered that all loss of containment events would be full rupture events regardless of the actual size of the opening in the pipeline. This is a conservative assumption because there is a broad spectrum of opening sizes from full bore rupture down to pin-holes that could be considered under various geohazard scenarios.

At this time, non LoC events such as damage to pipeline coating are not included in this assessment. The assessment was made with respect to pipeline route Revision (Rev) V. Note that some of the previous geotechnical documentation refers to Rev R. While the kilometre posts and differences vary along the route, Rev R route is approximately 5.7 km shorter than Rev V.

The geohazard assessment discussed in this report is part of a wider hazard and risk assessment for the pipelines and other infrastructure being carried out by others.

Note that this document is a revised version of the Report on Quantitative Geohazard Assessment Proposed Northern Gateway Pipelines which was submitted for filing April 30, 2012. The following revisions have been made:

- The assessment has been updated to route revision V (Rev V). The most significant route changes have been made near the Alexander Indian Reserve and the Morice River. Geohazards within these and other revised sections were identified and included in this report. Geohazards on previous route segments no longer followed have been changed to legacy geohazards (further explained in Section 4.4).
- 2. Additional LiDAR has been acquired at several locations including areas near Bald Mountain Creek, Pinto Creek, Two Creek and the Sakwatamau River. Hazards identified as a result of review of this additional LiDAR are included.
- 3. Additional field reconnaissance and review of existing data has occurred since the preceding version of this report. Any changes in the understanding of existing hazards or newly identified hazards have been incorporated.
- 4. In the lower Kitimat Valley, glaciomarine clay might be present in some areas and might give rise to a lateral spreading hazard. Areas where this hazard is likely to occur have been avoided; however, it is possible that future investigations might indicate areas where hte hazard is present. In the previous version of this report, the calculated frequency of loss of containment (FLOC) for areas potentially subject to lateral spreading hazard was presented as an unmitigated value. To be consistent with the treatment of other hazard types, this version presents the mitigated FLOC values. Mitigation methods include rerouting, excavation of shallow layers, or trenchless methods to go under the deposit. The level of mitigation assumed is consistent with some residual low level hazard remaining which is conservative.
- 5. Further refinement of geohazard boundaries has been carried out.
- 6. The hazard impact zone kilometre post locations used the present report were defined to a 20 m resolution (previously 50 m) which may exceed the accuracy with which the boundaries can be defined at this point, particularly where LiDAR is not yet available or where field reconnaissances have not been undertaken. Boundaries will be refined as results of additional investigation and LiDAR become available.

1.1 Purpose and Nature of a Geohazard Assessment

Relative to other types of hazards, geohazards represent a special class of potential threats to a pipeline (Rizkalla, 2008). A geohazard, as defined in this report, is a threat related to a geological, geotechnical, or hydrotechnical condition or process that may exist along the pipeline route.

A geohazard assessment is a means of identifying and characterizing potential geohazards for the purposes of evaluating the susceptibility of the pipeline to damage along the planned right-of-way. In this report, the geohazard assessment is viewed from the perspective of vulnerability. Vulnerability considers the potential for a given geohazard occurrence to damage the pipeline and that not all geohazard occurrences may damage the pipeline to the point that a LoC event occurs.

The purpose of this report is to present the methods, assumptions and results of the geohazard assessment. As indicated, the results are intended to be incorporated into an overall pipeline risk assessment. The study expands on the existing qualitative geohazard assessment presented in the previous Project filings. As noted above, the present study specifically focuses on geohazards that might result in a loss of containment of the pipeline, but excludes discussion of the consequences since they are discussed within the overall pipeline risk assessment.

1.2 Organization

This geohazard assessment report includes the following subjects and sections:

- Section 2.0: Key definitions of concepts used in this assessment and limitations of the assessment.
- Section 3.0: Discussion of the difference between the present quantitative geohazard assessment and the previous qualitative geohazard assessment that was included in the Project filings to date.
- Section 4.0: Discussion of the present Quantitative Geohazard Assessment for the Project.
- Section 5.0: Results.
- Appendix A: Ranking sheets for each geohazard type to guide the assignment of factors to determine the frequency of loss of containment.
- Appendix B:
 - List of geohazards sorted by kilometre including start and end of the hazard along the route.
 - List of geohazards sorted by geohazard type.
 - o Detailed records of the individual geohazards.
- Appendix C: Summary of proposed mitigations and engineering controls to reduce the frequency of loss of containment events from identified geohazards.

2.0 KEY DEFINITIONS AND CONCEPTS

2.1 Geohazard

A geohazard is a threat from a naturally occurring geological, geotechnical or hydrotechnical process or condition that may lead to damage. The process may be triggered by natural or anthropogenic causes. For the purposes of this assessment, the damage considered is loss of containment.

2.2 Risk

In the present assessment, a modified definition of the general expression of risk is adopted which incorporates pipeline vulnerability (the conditional probability of damage given the occurrence of a geohazard).

Risk = Probability of Hazard Occurrence x Vulnerability of the Pipeline to the Hazard x Consequences of Pipeline Failure

Probability of a geohazard causing a LoC event = Probability of Hazard Occurrence x Vulnerability of the Pipeline to the Hazard

This report discusses the probability or likelihood of various geohazard events and the conditional probability of loss of containment based on pipeline vulnerability. As discussed elsewhere in the report, the consequences of the event and, therefore, the risk, will be discussed by others. However, it should particularly be noted that the terms risk and hazard are not interchangeable.

2.3 Qualitative, Semi-Quantitative and Quantitative Assessments

The results of a hazard assessment, and ultimately a risk assessment, can be expressed in the form of qualitative expressions (high/low), semi-quantitative (ranked indices) or quantitative (numerical probabilistic) expressions. The choice between these different forms of hazard assessment is often based on the availability and type of data and may evolve over the course of the project. It should be noted that all three approaches are recognized as appropriate in CSA-Z662 if applied within a well-defined framework in a systematic manner.

For the purposes of this assessment, the probability of pipeline loss of containment due to discrete geohazards has been approximately assessed. The assessment incorporates factors evaluated using expert judgement yielding results suitable for incorporation within the overall pipeline risk assessment. Results are expressed as events/year per linear section of pipeline. Because the results are expressed quantitatively, the assessment is considered to be quantitative and has been based on judgement.

2.4 Hazard Impact Zone

The hazard impact zone is defined as the overall zone of influence of a specific geohazard, and is defined in a 3-dimensional sense. That is, the start and end of the hazard zone along the proposed pipeline route have been defined relative to Rev V kilometre posts, and the depth of cover over the pipeline has been taken into consideration. The potential for a specific hazard to affect a buried pipeline affects the choice of mitigation for several hazards such as scour or lateral erosion.

2.5 Locations Assessed

The assessment was made on the basis of the Rev V route. As discussed in other filed materials, the Rev V route is the centerline of an assessment area and the actual pipeline centerlines may vary as additional work is undertaken. However, for the purposes of the assessment, a centreline is needed and the Rev V route was selected.

It should also be noted that the assessment of certain hazards was not limited to the Project Assessment Corridor, which is typically 1 km wide. Thus, hazards outside this corridor that could potentially affect the pipeline were assessed as far as necessary to make sure that all applicable geohazards were included. Thus, rockfall, avalanches, debris flows and various forms of slides were assessed to distances of sometimes several kilometres from the Rev V route and were typically assessed to the height of land. Assessments of other hazards also extended outside the corridor as necessary, for example, lateral erosion and avulsion.

2.6 The Necessary Role of Engineering Judgement in Geohazard Assessment

2.6.1 Engineering Judgement

Engineering judgement plays a key role in the hazard assessment presented in this report. Engineering judgement is the expression of the familiar experience and considers the form of the problem, location of the study area, type of development, methods of analysis and construction operational practice. In many geotechnical engineering applications, engineering judgement is relied upon to provide suitable bounds on potential outcomes based on a range of potential inputs and scenarios. The reliance on judgement in the geotechnical engineering community is necessary due to geological uncertainty that may vary over short and long distances. Engineering judgement has been and will be complemented by site specific ground investigations, available literature, case histories, and other such information. However, since subsurface knowledge is necessarily always incomplete, some level of engineering judgement is always required in geotechnical engineering.

2.6.2 Expert Panel

An expert panel was used to review the engineering judgements and assignments of the various factors on a general basis for the Project. The panel consisted of the following personnel:

- Gregg O'Neil, P.Eng., Klohn Crippen Berger, Calgary
- Pete Barlow, P.Eng., AMEC Environment and Infrastructure, Edmonton
- Rod Read, Ph.D., P.Eng. P.Geol., WorleyParsons, Calgary
- Clive MacKay, P.Eng. P.Geol., WorleyParsons, Calgary

2.6.3 Order-of-Magnitude Approach

During the assignment of the factors in the hazard assessment, a general order-of-magnitude approach was used in most cases. The order-of-magnitude approach is appropriate since the factors assigned were based on judgement. For example, a geohazard with annual probabilities of occurrence of 0.1, 0.01, 0.001 would correspond to 10 year, 100 year and 1000 year return periods, respectively. Other factors were similarly assessed based on orders of magnitude.

2.7 Susceptibility Assessment

A susceptibility assessment approach was used as defined in Rizkalla (2008) within the framework of a quantitative hazard assessment to determine a predicted likelihood of failure. The method developed for this project uses four key index values, or factors, to provide a numerical expression to estimate the susceptibility of the pipeline to particular geohazards at discrete locations. The evaluation relies on expert judgement. The factors, defined below, include Occurrence, Frequency, Vulnerability, and Mitigation.

Susceptibility =
$$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$$

 $I_{(i)}$ = Factor from 0 to 1 expressing the potential for the geohazard to occur at location i.

F_(i) = Frequency of occurrence for a specific geohazard at location i expressed in events per year;

Where:

 $V_{(i)} = V_{(i)} = V_{($

 $M_{(i)} = \begin{array}{l} \mbox{Mitigation effects expressed as a reduction factor on either $V_{(i)}$ or $F_{(i)}$ representing the resultant} \\ M_{(i)} = \begin{array}{l} \mbox{reduction in geohazard occurrence or reduced potential for loss of containment due to the} \\ \mbox{geohazard occurrence at location i.} \end{array}$

Thus, Susceptibility, $F_{LOC(i)}$ has units of frequency (events per year). The various parameters are discussed further below.

2.8 Occurrence Factor

The occurrence factor $(I_{(i)})$ expresses the potential for a particular geohazard to occur in a specific hazard impact zone. The factor is expressed as a value from 0 to 1, with 0 being defined as "not possible", and 1 being "defined or documented occurrence". Intermediate values were chosen based on comparison of the route conditions to the screening criteria based on expert judgement.

2.9 Frequency

The frequency values $(F_{(i)})$ used in this assessment represent the inverse of return period for the occurrence of a particular geohazard, expressed as events per year. The return periods provided are based on expert judgement. Guidance for the definition of the appropriate return period at each site is provided in the detailed process descriptions discussed later in this report.

In general, the return period considered provides an estimated frequency for all occurrences of a specific hazard at the given location, including damaging and non-damaging events. This is appropriate for many hazards such as deep-seated slides where the nature of the hazard means that all of the potential events might lead to a LoC event. However, there are a few hazards (for example, avalanches) where both small and large events might occur. The small events are not considered to be events that would lead to a LoC event. In these cases, the frequency was selected for events sufficiently large to possibly trigger a LoC event.

2.10 Vulnerability Factor

Vulnerability $(V_{(i)})$ estimates the ability for the pipeline to withstand the imposed effects of a geohazard. The factor ranges from 0 (no damage in the event of the hazard occurrence) to 1 (loss of containment in all situations). For the purposes of this assessment, vulnerability is the fraction of geohazard occurrences at a specific location that would lead to a damaging event and, specifically, the fraction that would result in a loss of containment.

The fraction of events that could potentially cause a loss of containment was approximately evaluated and assigned for each specific geohazard type. This fraction within each hazard type was often based on relevant parameters such as the hazard scale, local terrain conditions and alignment geometry relative to the hazard. For example, the vulnerability of a pipeline crossing a channel subject to debris flow and avalanche hazards depends, in part, on channel gradient (which affects whether erosion or deposition are likely to occur). While many hazard attributes and terrain conditions that affect the vulnerability can easily be measured; the assigned numerical value must be estimated based on professional judgement and previous experience or records of events that have occurred on other pipelines.

As a further example, the authors are not aware of debris flows, avulsion or snow avalanche causing a LoC within British Columbia/Alberta on other large diameter pipelines such as the Vancouver Island and Kinder Morgan TransMountain lines. These hazards therefore have been assigned lower vulnerabilities relative to other hazards such as deep-seated slides which have several known cases where pipeline rupture has occurred.

The vulnerability is also linked to the properties of the pipeline steel including strength, wall thickness, resistance to fracture propagation and other factors. For some cases, such as lateral erosion, damage thresholds have been estimated based on previous work with similar pipelines. For example, the pipeline was considered to be relatively resistant to failure for unsupported lengths of up to 25 m if exposed by lateral erosion by a river; however the vulnerability to failure increases where longer spans may be exposed. Appendix A provides details on the criteria used to evaluate each individual hazard including their vulnerabilities.

It is assumed that the pipelines will be designed and constructed in general accordance with good pipeline design and construction as practiced in western Canada since the behaviour of previously constructed pipelines, including pipelines through the Coast Mountains, is part of the experience base used to assess the hazards. A further assumption was made that steel with adequate toughness to prevent fracture propagation will be used in areas subject to geohazards, similar to other recently constructed pipelines in western Canada which formed part of the experience base of the expert panel and authors.

2.11 Mitigation Factor

Mitigation $(M_{(i)})$ is a factor operating either on the vulnerability or frequency of occurrence, depending on the nature of the mitigation and is implemented in the design, construction and/or operation of the pipeline where elevated hazard levels are identified. This factor is an expression of the effects of implementing mitigation strategies in the project design that either increase the resistance of the pipeline to potential damage by a particular geohazard, or reduce the frequency of occurrence of a particular geohazard. Potential mitigation options are identified in each of the detailed geohazard process descriptions referenced later in this report.

The mitigation methods were defined for each identified geohazard occurrence. The mitigation options are preliminary and will be revised and adjusted during further more detailed investigations and design. Further review, adjustment and implementation of mitigation options is expected throughout the design, construction and operation of the pipelines as part of the ongoing hazard and risk assessment process that will occur throughout the life of the pipelines. The mitigation factors were established based on engineering judgement and previous experience of the performance of such measures on other pipelines.

The mitigation factors were modified by a manual adjustment factor in two cases:

- 1. Where several mitigative methods or factors were applied, the total reduction of frequency of occurrence may not be as great as implied by multiplying the factors. In this case the total effect of the various mitigations was reduced.
- 2. For certain mitigations, the mitigation may reduce the frequency of occurrence more than was assumed for the standard case. In these cases, the mitigation effectiveness was increased.

The mitigation values for 20 of the 363 geohazards were adjusted using the manual adjustment factor.

2.12 Considerations for the Work

The following points discuss some key considerations with respect to the work:

- The work was based on available information including air based and ground based site reconnaissances and investigations, interpretation of available satellite and airphoto imagery, topographic mapping, published information and other unpublished information. As additional investigative work is undertaken, the assessments provided may be revised.
- 2. The general methods of proposed mitigation have been outlined. Detailed mitigation design will be undertaken during the detailed investigation and design phases of the Project.
- 3. It is likely that some of the assessments will change as additional information is received.
- 4. Where there is not sufficient information available, the assessments have been made using assumptions that may be conservative. For example, for rockfall hazard areas, the assumption has been made that very large blocks sufficient to cause a LoC event could fall and would impact on the pipeline in such a way as to cause an LoC event. In reality, it is possible that future work will show that the geology of a particular outcrop is not conducive to falls of very large rock blocks, the blocks would not have sufficient impact velocity to penetrate to and puncture the pipeline, or the pipeline is not located within the run out pathway of a potential rockfall.
- 5. Some of the mitigation techniques may require construction methods or routing that vary from those previously filed. In some cases, routing changes may be required from a mitigation point-of-view. In other cases, variations in stream crossing methods may be required for mitigation of slope stability conditions.

- 6. The assessment of the hazard impacts on the pipeline system assumes that the pipe steel has adequate toughness such that fractures will not propagate.
- 7. Secondary events triggered as a result of an initial event have not been considered at this point since the probability of the chain of two events leading to a LoC event is relatively low. For example, a seismic event is one potential trigger for slide movements, but the hazards of such slide movements are already included and other trigger events such as extreme precipitation events would likely have a higher probability. Seismic triggers of slides will be further considered during detailed design in the event that weak materials on which failure has not occurred to date are found during further investigations.

3.0 PREVIOUS GEOHAZARD ASSESSMENT FOR THE PROJECT

An initial geohazard assessment for the Project was carried out based on Route Rev R, and was presented in the May 2010 filing in Appendix E, "Overall Geotechnical Report" in Volume 3. The initial assessment ranked various geohazards along the project route using a five by five matrix defined by estimates of likelihood of occurrence of the geohazard and consequence of occurrence. The preliminary geohazard risk assessment was qualitative and included definition of 170 individual geohazard occurrences within 13 categories. This dataset included an evaluation of the unmitigated and mitigated scenarios for pipeline design through the defined hazard impact areas.

The existing inventory of 170 geohazards was reviewed and incorporated into the present updated work. However, it should be noted that the present report work deals strictly with events with the potential for loss of containment and thus some of the geohazards in the preliminary work, such as wind erosion, do not appear in the present assessment. It is noted that future work related to geohazards may include consideration for the effects of geohazards on other project elements and geohazards that may result in damage that does not immediately involve loss of containment, such as coating damage.

The present assessment differs from the previous 2010 assessment in several key areas:

- In many cases, hazards were defined at specific points along the pipeline in the previous assessment. For example, a debris flow might be defined as intersecting the pipeline at a specific kilometre post. In the present study, the pipeline length affected has been defined in all cases.
- 2. In some cases in the previous assessment, a specific hazard was defined over a broader area of pipeline route than it actually affected. For example, the present study defines seven potential avalanche hazards along Hoult Creek, each with a specific defined length, whereas the previous study indicated that avalanche hazard was present along the entire length of the route in the Hoult Creek valley. This previous approach would overestimate the risk in the present study since the hazard (avalanches in this case) is only present in specific areas.
- 3. In the previous study, some hazards were lumped together where they occur at the same location. Co-location of debris flows and avulsion is an example of this. In the present study, these hazards are discussed separately, although it is noted that the mitigation methods may overlap and need to be coordinated in the design and construction of the pipeline.
- 4. Some additional hazard locations were added to the present study. These were not included in the previous study because they had a low potential for posing a serious threat to the pipeline. In other cases, hazards were added on the basis of additional knowledge that has been acquired during further investigations since the original assessment was compiled. In this respect, the potential for occurrence of various

hazards has been reassessed along the entire pipeline using the most recently available information.

5. Some hazards have also been added in areas where the pipeline route has been significantly revised since route Rev R. In other cases, reroutes have routed the pipeline away from some hazards. These have been retained in the database but have been assigned $F_{(i)} = 0$ (legacy geohazard).

4.0 GEOHAZARD ASSESSMENT PROCESS USED TO SUPPORT PIPELINE RISK ASSESSMENT

As discussed above, the geohazard assessment presented in this report was carried out from the perspective of a susceptibility assessment. A susceptibility assessment includes the consideration of the potential for occurrence and the return period, but also includes the recognition that some processes may occur without damage to pipeline (vulnerability), and that mitigation will reduce the exposure to a threat.

As defined above, susceptibility is the product of the factors for occurrence (I), frequency (F), vulnerability (V) and mitigation (M). Susceptibility to a loss of containment (FLOC) event expressed in terms of events per year at any location or segment (i) is expressed numerically as:

Susceptibility = $F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$

A similar form of this method was used for geohazard assessment of the Mackenzie Valley Gas Pipeline Project, previously reviewed by the National Energy Board, and was accepted as a suitable approach in the NEB's Reason for Decision (National Energy Board, 2010).

The geohazard assessment work included establishing the list of geohazards along the route that could result in a potential LoC event, identification of the possible occurrence areas, definition of the unmitigated susceptibility factors at each location and definition of appropriate mitigation strategies. The assessment process is discussed further in the following sections.

4.1 Geohazard List used for Geohazard Assessment

Table 1, below, lists the geohazards considered in the current assessment. The list was developed based on the work of the Project team to date, and as noted above, is restricted to events that could potentially lead to loss of containment. Detailed descriptions of each of the geohazards are presented in Appendix A.

Category Name	Acronym	Description	
Avulsion	AVU	Channel switching or erosion of a new channel on an alluvial fan. Does not include channel changes or lateral erosion in streams not on alluvial fans.	
Debris Flow	DF	A very rapid flow of saturated debris in a steep, confined channel.	
Avalanche	AVA	Rapid down-slope movement of snow and ice, possibly with entrained debris. Does not include rock avalanches (note that no rock avalanche hazard was found along or close to the route).	
Rockfall	RF	Direct fall and rolling rocks from rock bluffs, rock or rock cuts, and/or colluviums or soil slopes.	
Slide – shallow to moderately deep	SM	Translational sliding of soil or rock with a rupture surface less than 10-15 m deep.	
Deep-seated slide	DS	Translational, rotational or compound sliding of soil or rock with a rupture surface greater than 15 m deep.	
Scour	SC	Erosion of particles from a stream bed to produce either temporary or permanent downcutting.	
Lateral Migration	LM	The lateral movement of a stream channel as a result of erosion and undercutting of banks. Reoccupation of subchannels and channel switching in meandering or braided systems is also considered to be lateral erosion for the purposes of this study and not avulsion.	
Lateral Spreading	LS	Lateral ground displacements as a result of liquefaction or weakening of loose or soft geological units as a result of seismic shaking. Includes lateral movement toward a topographic break as well as Transient Ground Deformation (TDG) that may not move toward a topographic break.	

Table 1:	List of Geohazards Assessed
	LIST OF GEOFIAZATUS ASSESSEU

No rock topples, rock avalanches, or sackung failures that would affect the proposed route have been identified and so are not included in the foregoing list. Karst hazards were identified in the previous assessment along former version of the route; however, no karst has been identified on route Rev V.

4.2 Detailed Descriptions of Geohazards

Appendix A includes detailed ranking sheets for the geohazards outlined in Table 1. The ranking sheets summarize the basis for the susceptibility approach as well as assumptions and guidance on the assignment of the I, F, V, and M factors for site specific evaluation. Additional comments providing the rationale for choice of various factors are included in the detailed geohazard summary sheets attached in Appendix B.

4.3 Definition of Potential Geohazard Impact Areas

Using the ranking sheets in Appendix A and existing project data, the pipeline route was evaluated to determine potential geohazard impact areas. The assessment area used for the purposes of the geohazard assessment included areas beyond the nominally 1 km wide assessment corridor where potential initiation zones or run-out lengths for geohazards that could potentially impact the pipeline route warranted.

4.4 Database Management of Site Specific Data

A total of 363 geohazard occurrence locations were identified in the present study. To handle the increased amount of data, a project specific geohazard database was created. The output from the database is included in Appendix B and is described below.

Each hazard is presented in the database as a "Geohazard Detail" record. The records have a unique number (ID) for each identified hazard. The identification number does not imply location but is simply assigned in serial fashion as the data is uploaded. Note that the geohazard identifications for the original 170 geohazard occurrences in the Overall Geotechnical Report are included as the "Feature" number. These numbers are not actively used in the present data base but are included to allow correlation with the previous report. Reference information is provided which allows the user to determine the source from which the particular hazard was identified.

As discussed above, certain hazards identified at earlier stages of the Project that pertain to former revisions of the proposed route are included in the database for consistency with previously filed reports. These relict or "Legacy" records are no longer considered to have potential impacts on the current Rev V alignment since they have been mitigated by routing changes. These records have been flagged and their occurrence, frequency and vulnerability factors have been set to zero. This treatment maintains consistency with previous filings and retains the hazard for detailed consideration in case of future reroutes in the general area.

Other hazards within the database have been flagged as requiring a "Reroute" for mitigation purposes. The reroutes are relative to the current Rev V alignment but at the time of writing have not been formally accepted in the Project Routing Process (Route Committee).

5.0 RESULTS OF GEOHAZARD ANALYSES

The results of the geohazard analyses are attached in Appendix B which contains both a summary of the results and the individual description sheets for each individually identified hazard listed sequentially by Rev V kilometre post. Appendix C provides a summary of the mitigations considered for each defined geohazard.

The frequency of loss of containment is presented for each specified hazard impact location relative to the Rev V chainage. The mitigated frequency values typically ranged from 1×10^{-10} to 1×10^{-4} events/year. The statistical compilation and assembly of frequency data into an overall probability of failure for the full length of the pipeline is beyond the scope of this report.

It should be recognized that the data presented in the Appendices are conditional on the application of the proposed or equivalent mitigations. The mitigations have been selected in accordance with standard and appropriate pipeline construction practices. Note that the mitigation strategies and locations shown are preliminary and will be further considered and refined at the detailed engineering stage of the Project.

6.0 LIMITATIONS AND CLOSURE

Assessments and related information presented herein are based on a geotechnical evaluation of the work and other information noted. The results of the geohazard assessment are intended to provide baseline information to be used within the context of an overall pipeline risk assessment. It is assumed that the assessments will continue to be updated as the Project evolves. If conditions other than those reported are noted during subsequent phases of the project, AMEC should be notified and be given the opportunity to review and revise the current recommendations, if necessary. The assessments presented herein may not be valid if an adequate level of review or inspection is not provided during construction.

This report has been prepared for the exclusive use of Northern Gateway Inc and its consultants for specific application as discussed in this report. The assessments are intended to be used within the overall framework of risk assessment by persons and organizations familiar with and having suitable skills in risk assessment. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. AMEC accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. It has been prepared in accordance with generally accepted geotechnical and hydrotechnical engineering practices. No other warranty, expressed or implied, is made.

Respectfully submitted,

AMEC Environment & Infrastructure, a Division of AMEC Americas Limited

Reviewed by:

Original paper copies signed and sealed by Chris Davidson, M.Sc., P.Geo. (BC) Staff Engineering Geologist

per

Chris Davidson, M.Sc., P.Geo. (BC) Staff Engineering Geologist

Pete Barlow, M.Sc., P.Eng. **Principal Engineer**

Original paper copies signed and sealed by D.S. (Drum) Cavers, M.Eng., P.Eng. (BC and Alberta), P.Geo. (BC) Principal Engineer

per D.S. (Drum) Cavers, M.Eng., P.Eng. (BC and Alberta), P.Geo. (BC) **Principal Engineer**

PERMIT TO PRACTICE AMEC Earth & Environmental a Division of AMEC Americas Limited Signature

Date .

PERMIT NUMBER: P-04546 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

AMEC File: EG0926008 2100 800 G:\PROJECTS\Other Offices\EG-Edmonton\EG09260 - Enbridge Gateway\2100 800 - Risk Assessment\Reports\Final Report RevV Jan 2013\1170-RG-20130110_NGP Geohaz Assess Rpt_RevV_23Jan13_FINAL.docx

REFERENCES

AMEC Environment and Infrastructure. 2010. Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010

AMEC Environment and Infrastructure. 2012. Report on Quantitative Geohazard Assessment Proposed Northern Gateway Pipelines. April 30, 2012.

Dietzfelbinger, C. of Bear Enterprises Ltd. 2009. Location and properties of avalanche paths that affect the proposed northern gateway pipeline alignment through the Coast Mountains. August 4, 2009.

National Energy Board. 2010. Mackenzie Gas Project – Reasons for Decision, Volume 1: Respecting all voices: Our journey to a decision. December 2010.

Schwab, J.W. 2011. Hillslope and Fluvial Processes Along the Proposed Pipeline Corridor, Burns Lake to Kitimat, West Central British Columbia. Prepared for Bulkley Valley Centre for Natural Resources Research & Management. September 2011.

Rizkalla, Moness. 2008. Pipeline Geo-Environmental Design and Geohazard Management. American Society for Mechanical Engineering.

APPENDIX A

Ranking Sheets for each Geohazard Assessed

GEOHAZARD DESCRIPTION: SNOW AVALANCHE

	Г		Frequency of a loss of containment event due to
GOVERNING EQUATION	FL FL	_OC(i) =	Frequency of a loss of containment event due to
RELATING THE FREQUENCY OF			geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT (LOC)		$I_{(i)} =$	Factor from 0 to 1 expressing the potential for the
EVENT RELATED TO		()	geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:		$F_{(i)} =$	Frequency of occurrence of the geohazard at location i
		.,	expressed in events per year;
		V _(i) =	Vulnerability of the pipeline to loss of containment
		.,	events expressed as a fraction of total geohazard
	Where;		occurrences that would result in loss of containment.
$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$			The unmitigated case assumes standard mainline
			construction and operation conditions.
		M(i) =	Mitigation effects expressed as a reduction factor on
		(-)	either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
			geohazard occurrence or reduced potential for loss of
			containment due to geohazard occurrence due to
			potential site specific mitigation(s) applied at location i.
			potential site specific miligation(s) applied at location i.

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor	
	<u>General Process Description</u> Rapid down-slope movement of snow and ice, possibly with entrained debris. Mechanism excludes rock or debris avalanches which are described in a separate category.	 0 = Not Possible (does not meet any screening criteria) 0.01 Theoretically probable to occur at this location (site is either a high snow accumulation area, or has sustained slopes for several hundred metres steeper than 30 degrees above the pipeline, but not both) 0.1 = Credible potential occurrence at this location. 	
li	Required Conditions for Occurrence 1. Significant snow accumulations in mountainous terrain. 2. Failure of snowpack on a weak snow/ice layer. 3. Release zones are typically inclined between 30° and 50° ¹ . Definition of Initial Areas of Concern (Screening Criteria) 1. Mountain ranges with high snow accumulations and high relief (Coast Mountains and Rocky Mountains physiographic region). 2. Release and transport zones must exceed 30 degrees. 3. Natural, sparsely forested or bare slopes that define tracks originating from upland release zones.		
	 Mountain gully and stream channels steeper than 30°. <u>Additional Information used for refine the hazard occurrence areas</u> Existing Avalanche Study carried out in the Coast Ranges. Field review data (documented in Table B-1). Field review aerial oblique photos. Corridor mapping showing avalanche terrain units. Google Earth and other suitable imagery. 	(meets all screening criteria with the exception of a lack of trees indicating regular occurrence) 1.0 = Defined occurrence (documented past occurrence via publication, field confirmation, or both)	
Fi	<u>Triggering Mechanisms</u> Overloading of a weak layer of snow/ice contained within the snow pack. Formation of weak layer may be a result of previous weather patterns. Often triggered by storm events (rapid loading, snow accumulation, rainfall) or associated weather changes such as temperature change or precipitation, but can also include seismic shaking and direct physical disturbances in the release zone. Dominant factors are seasonal weather patterns and recurrence of major storms. High frequency of occurrence (can include more than 1 per year per site).	If Triggering Mechanism is linked to historic database information, use the relevant frequency- magnitude data; otherwise use guideline such as; 1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1000 yrs	
	Potential Secondary Geohazard(s) Triggered Avalanche damming of streams in accumulation areas can result in stream avulsion and erosion in areas outside the previous stream channel. Also, potentially debris flows and flooding.		

¹ BC Forest Service Avalanche Guide

SNOW AVALANCHE

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
Vi ²	Description of Effects in Hazard Impact AreaRelease Zone – terrain with average slopes in the range of 30° to 50°.Snow depletion and minor surface debris entrainment is expected, although failure is generally within the snow pack and above a plane defined by the ground surface asperities. For routing of a standard buried pipeline in a release zone use V = 0.001.Transport Zone – open slope or channelized flow downslope of 	 0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 Mitigation Options³ Options to Reduce Frequency Avalanche Control Programs can be used to limit potential release volumes and reduce the size of potential events. Also various constructions to increase anchoring or roughness (used in areas such as the Alps). Options to Reduce Vulnerability Avoid by routing. Increase depth of cover where appropriate. Use heavy wall or concrete coated pipe to resist potential debris impacts. Use deflection berms. 	Avalanche Control; use, $M_{(i)} = 0.01$ Concrete Coating or Protection; use, $M_{(i)} = 0.1$ Deep Burial; use, $M_{(i)} = 0.01$ Deflection Berms; use, $M_{(i)} = 0.01$ Heavy wall Pipe; use, $M_{(i)} = 0.1$

Revised to March 7, 2012

² Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

³ For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

AVULSION

GOVERNING EQUATION	$F_{LOC(i)} =$	Frequency of a loss of containment event due to
RELATING THE FREQUENCY OF		geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT (LOC)	$I_{(i)} =$	Factor from 0 to 1 expressing the potential for the
EVENT RELATED TO	()	geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:	F _(i) =	Frequency of occurrence of the geohazard at location i
	(7)	expressed in events per year;
	V _(i) =	Vulnerability of the pipeline to loss of containment
	(')	events expressed as a fraction of total geohazard
	Where:	occurrences that would result in loss of containment.
$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$	TTHOIO,	The unmitigated case assumes standard mainline
		construction and operation conditions.
	M _(i) =	
	IVI(I) —	either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
		geohazard occurrence or reduced potential for loss of
		containment due to geohazard occurrence due to
		potential site specific mitigation(s) applied at location i.
1		

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	 General Process Description Avulsion is a process where stream flow is diverted out of an established channel onto adjacent, usually lower elevation terrain. For the purposes of the present study, avulsion is confined to alluvial fans. Lateral erosion (lateral migration of a channel) and channel switching/reoccupation within a floodplain system are not included and are assessed under lateral erosion. Avulsion is the principal factor resulting in the natural construction of alluvial fans and deltas. Avulsion is a characteristic of aggrading stream channels, and is not normally a concern in channels that are actively downcutting unless the channel is blocked by some external means. Avulsion typically occurs on fans as a result of aggradation that results in the channel being higher than adjacent parts of the fan followed by channel switching to a lower part of the fan. Avulsion may also be triggered by blocking of a stream channel such as by debris flows or avalanche debris. Generally, the presence of alluvial fans, deltas, and braided stream channels indicate that avulsion is possible and has occurred in the past. Alluvial fans are typically located at the junction of a steep upper stream reach and lower gentle reach that promotes rapid sedimentation. Required Conditions for Occurrence and Definition of Initial Areas of Concern (Screening Criteria) Stream channel on an alluvial fan system where the stream channel is not laterally constrained. Sedimentation occurring so that channel is aggrading and/or source of external blockage such as avalanche deposits (warm rain on snow events) or debris flows. 	 0 = Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
	Additional Information used for refine the hazard occurrence areas 1. Terrain studies and airphoto review. 2. Field review data (documented in Table B-1). 3. Review of aerial oblique photos taken during field visits. 4. Google Earth and other suitable imagery along the corridor. 5. Local area experience.	

AVULSION

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
F _(i)	Triggering Mechanisms Flood flows with high sedimentation, debris flows, ice jams, avalanche damming may trigger avulsion. Avulsion can also be significantly influenced by anthropogenic activities on an alluvial fan such as construction of roads or other disturbance that disrupts the topography. Natural processes can be estimated, but anthropogenic activities cannot. Potential Secondary Geohazard(s) Triggered	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as;
	Avulsion can lead to scour, lateral erosion and flooding as the stream flow establishes a new channel.	1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1000 yrs
	Description of Effects in Hazard Impact Area Pipeline damage typically involves coating damage, denting or scratching.	0 = Hazard occurrence would not result in LOC.
	For standard crossing burial depths within a zone of potential avulsion (pipeline running across fan), use V = 0.01 (large streams) to 0.001 (smaller streams). For above ground facilities, use V = 0.1.	0.001 = 0.1% of hazard occurrences would likely result in LOC.
V _(i) ¹		0.01 = 1 % of hazard occurrences would likely result in LOC.
		0.1 = 10 % of hazard occurrences would likely result in LOC.
		1.0 = Each occurrence of hazard would likely result in LOC.
	 <u>Mitigation Options</u>² <u>Options to Reduce Frequency</u> Use routing to locate crossings high on an alluvial fan where the channel may be more confined and the length of pipeline potentially subject to lateral erosion is reduced. Avoid fans and other areas where avulsion may occur. 	Trenchless Methods with depths beyond max theoretical scour depth and beyond limits of channel movements; use $M_{(i)} = 0.001$
M _(i)	 Options to Reduce Vulnerability Construct the pipeline below maximum scour depth across the zone of potential avulsion considering long term flows in the 1:100 or 	Heavy-wall Pipe; use, M _(i) = 0.1
τ ν τ(ι)	 Use heavy wall or concrete coated pipe to increase the resistance to damage in case of exposure. 	Berms or stream training, use, $M_{(i)} = 0.1$
	 Construct berms, stream training or fills to protect above ground facilities or some parts of a buried pipeline. 	Pipeline below maximum predicted scour depth along alluvial fan impact area; use, $M_{(i)} = 0.01$
Devieed	to March 7, 2012	

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

DEBRIS FLOW

GOVERNING EQUATION	$F_{LOC(i)} =$	Frequency of a loss of containment event due to
RELATING THE FREQUENCY OF		geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT	$I_{(i)} =$	Factor from 0 to 1 expressing the potential for the
EVENT RELATED TO		geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:	F _(i) =	Frequency of occurrence of the geohazard at location i
		expressed in events per year;
	V _(i) =	Vulnerability of the pipeline to loss of containment
		events expressed as a fraction of total geohazard
	Where;	occurrences that would result in loss of containment.
$F_{\text{LOC}(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$		The unmitigated case assumes standard mainline
		construction and operation conditions.
	M _(i) =	Mitigation effects expressed as a reduction factor on
		either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
		geohazard occurrence or reduced potential for loss of
		containment due to geohazard occurrence due to
		potential site specific mitigation(s) applied at location i.
	1	

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	 <u>General Process Description</u> A rapidly moving, mixture of soils, rock, organic debris, water and/or snow and ice. Within the project corridor, channelized debris flows predominate. Debris flows typically result from accumulations of fluvial and colluvial debris along or adjacent to a stream channel that are mobilized by high stream flows. The high-density mixture of debris can move large bounders and may cause significant erosion along the path of the flow. Deposition occurs where the channel gradient decreases and may result in the deposition of an alluvial fan over time. <u>Required Conditions for Occurrence</u>	 0 = Not Possible (Screening criteria not met) 0.01 = Theoretically probable to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
F _(i)	Triggering Mechanisms Significant storm-level precipitation events are the most likely trigger, although avalanche and landslide dam breaches may also trigger a debris flow. Each major storm (typically >25 year return period storm) is not a direct trigger as sufficient time is required to accumulate debris for along the channel for re-current events.	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as;

DEBRIS FLOW

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	Potential Secondary Geohazard(s) Triggered Debris flows are highly erosive events, and can cause significant erosion in the initiation and transportation areas and deposit sediment in the accumulation area (either lower part of stream channel or alluvial fan), thus secondary effects could include flooding, avulsion, scour and lateral erosion. Impact loading on exposed structures (either above ground or due to scour) is a consideration.	1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1,000 yrs
V _(i) ¹	Description of Potential Effects in Hazard Impact AreaDepletion Zone – Significant erosion in the channel is expected in the upper portions of the debris flow. For routing of buried pipeline at standard cover depths through a potential depletion/transport zone use V = 1.0 since depletion could result in significant loss of support and potentially expose the pipe to direct impacts and lateral loads.Transport Zone – Significant scour may occur through the transport zone, which for the purposes of this study, is defined as channels steeper than 15° in either confined or open reaches subject to potential debris flows.For routing of buried pipeline at standard cover depths through a potential transport zone use V = 0.1Deposition and Erosion Zones – The deceleration and deposition of slide debris is a function of the debris volume, channel gradient and confinement within the channel from gully sidewalls. Smaller flow volumes in unconfined channels may transition from erosion to deposition of mobilized debris at channel gradients around 15°. Larger, confined flows may continue to erode bed materials until reaching flatter terrain with slopes as flat as 1°.For routing of a buried pipeline at standard cover depths in a zone of deposition/erosion (channel gradients between 1 – 15° in the immediate vicinity of the pipeline), use V =0.01.Note that avulsion is considered separately, but may be triggered by debris flow.Consideration for Above Ground Structures – use V = 10 for above ground facilities.	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 <u>Mitigation Options</u>² <u>Options Acting to Reduce Frequency</u> Could use debris catchment structures and floodwater control structures. Assumes a long-term maintenance and cleaning program is established for such infrastructure. <u>Options Acting to Reduce Vulnerability</u> Avoid routing using standard pipeline burial or any above ground structures (unless suitable clearance is provided) through potential debris flow areas, particularly in areas where high erosion may occur. Consider deep burial, such as below 200 year scour elevation or by local correlations to other events. 	Debris Catchment or Floodwater Control Structures upstream of Route; use, $M_{(i)} = 0.01$ Deep Burial (below maximum 200 year return period scour depth); use, $M_{(i)} = 0.01$ Diversion Berms for Flood Flows; use, $M_{(i)} = 0.1$ Heavy wall Pipe; use, $M_{(i)} = 0.1$

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

DEBRIS FLOW

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	Diversion structures such as berms may be used to protect selected areas.	Concrete Coating or Protection; use, M _(i) = 0.01
	Use protective materials or thicker pipe (eg., concrete coating or heavy wall pipe)	

Revised to March 7, 2012

 $F_{\text{LOC}(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$

occurrences that would result in loss of containment.

Mitigation effects expressed as a reduction factor on

either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in geohazard occurrence or reduced potential for loss of containment due to geohazard occurrence due to potential site specific mitigation(s) applied at location i.

The unmitigated case assumes standard mainline

construction and operation conditions.

GOVERNING EQUATION $F_{LOC(i)} =$ Frequency of a loss of containment event due to RELATING THE FREQUENCY OF geohazard at location I, expressed in events per year; I_(i) = Factor from 0 to 1 expressing the potential for the A LOSS OF CONTAINMENT (LOC) EVENT RELATED TO geohazard to occur at location i. Frequency of occurrence of the geohazard at location i GEOHAZARD IS DEFINED AS: F_(i) = expressed in events per year; Vulnerability of the pipeline to loss of containment V_(i) = events expressed as a fraction of total geohazard

Where:

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	General Process Description Slides in soil and/or rock more than 10 to 15 m deep that typically occur on weak layers or through weak geological units. Movement rates are typically variable and may often be episodic. These types of slides can occur on low gradient slopes where weak materials are present, although not exclusively. This hazard excludes toppling failures that may be deepseated as they are dealt with separately. Required Conditions for Occurrence 1. Weak geological layers or units at depths of at least 10 to 15 m and/or where high groundwater pressures exist at depth. 2. Failure surface must daylight. 3. Slopes steeper than residual friction angles of the underlying weak materials. Definition of Initial Areas of Concern (Screening Criteria) 1. Areas underlain by weak geological units with slopes in excess of about 8 degrees. (Note that Ør is typically about 8° in medium to high plastic clay sediments in Alberta and BC. Glaciomarine sediments may vary.) Weak geological units include: • glaciolacustrine and sedimentary rock sequences in Alberta; • glaciolacustrine soils throughout the central interior of BC; • some volcanic rocks may contain weak clay layers and, • glaciomarine deposits in coastal BC areas. Additional Information used for refine the hazard occurrence areas • Field Review data (documented in Table B-1). • LIDAR datasets. • Available airphoto imagery.	0 = Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
F _(i)	 Existing published mapping. <u>Triggering Mechanisms</u> Deep-seated landslides can include new slides and old re-activated slides. Sliding triggers, or changes in movement rates are often linked to precipitation patterns (high precipitation over a period of at least a few months) and/or slope profile changes associated with anthropogenic 	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such

DEEP-SEATED SLIDES

M(i) =

DEEP-SEATED SLIDES

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	causes or toe erosion by stream flow. For actively sliding areas, use F = 1.	as;
	Potential Secondary Geohazard(s) Triggered For rapid movements, damming of streams can result in flooding or stream avulsion, although this is rare.	1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1000 yrs
V _(i) ¹	Description of Effects in Hazard Impact AreaFor cases where the pipeline route crosses a high angle (>10°) deep- seated landslide, use V = 1.0 since the slide may be capable off larger and more rapid movements.If the pipeline is routed through deep-seated landslide with slope angles less than 10° (approaching the residual angle of friction), lower rates of movement may be more amenable to monitoring, use V = 0.1.For routing of a buried pipeline at standard cover depths above the scarp or beyond the toe of the slide, use V = 0.01, with the exception of a buffer zone equivalent to a distance extending 10% of the slide width in either direction. For a route through this buffer zone, use V = 0.1 unless there are documented reasons why the pipeline will not be subject to interaction with the slide as the toe area may be subject to retrogression.Lateral buffer zones should be equivalent to similar factors as discussed above, although the buffer zone should be estimated for each location based on geology and topography.	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 <u>Mitigation Options</u>² 1. Options to Reduce Frequency Removal of material from the crest and slope grading, counterweight berms, dewatering/drainage, erosion protection and surface water management, although for very large slides these measures may not be practical. If suitable, reduce the frequency factor by one order of magnitude. 2. Options to Reduce Vulnerability Avoid routing in slide zones by routing around or under. Routing options below may include HDD or other similar deep burial installations that avoid the landslide hazard zone. Note that if routing below is chosen, investigations or monitoring may be required to confirm the limits of the potential or active slide. Monitoring would be assumed to continue throughout the life of the project subject to revision based on detailed investigations. 	Deep Burial (below slide); use, $M_{(i)} = 0.001$ Surface water and/or groundwater control $M_{(i)} = 0.1$ Monitoring of slope stability conditions; use, $M_{(i)} = 0.1$ Reroute; use, $M_{(i)} = 0.001$ River training and/or riprap; use, $M_{(i)} = 0.01$ Major slope and crest grading; use, $M_{(i)} = 0.01$ Shallow grading; use, $M_{(i)} = 0.1$

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

GEOHAZARD DESCRIPTION: LATERAL EROSION

GOVERNING EQUATION RELATING THE FREQUENCY OF A LOSS OF CONTAINMENT (LOC) EVENT RELATED TO	F _{LOC(i)} = I _(i) =	geohazard at location I, expressed in events per year;
GEOHAZARD IS DEFINED AS:	F _(i) =	•
$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$	$V_{(i)}$ = Where; $M_{(i)}$ =	Vulnerability of the pipeline to loss of containment events expressed as a fraction of total geohazard occurrences that would result in loss of containment. The unmitigated case assumes standard mainline construction and operation conditions. Mitigation effects expressed as a reduction factor on either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
		geohazard occurrence or reduced potential for loss of containment due to geohazard occurrence due to potential site specific mitigation(s) applied at location i.

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	General Process Description Lateral erosion is the ongoing process of stream lateral erosion due to erosion along the side of a stream channel by moving water. Lateral erosion is a normal stream process and may involve meandering of the stream, erosion at a single point or bend, formation of multiple or braided channels or other forms of erosion. Reoccupation of subchannels and channel switching in meandering or braided systems is considered lateral erosion for the purposes of this study. Avulsion on alluvial fans is not included in lateral erosion. Rates of lateral erosion depend on many factors including material types (sand and silt may be more readily eroded than clay or rock), variations in flow, sediment load, gradient and other factors. Streams flowing in bedrock channels are typically not susceptible to significant rates of lateral migration. Generally, the presence of past lateral erosion provides some guidance that future lateral erosion is possible. Required Conditions for Occurrence 1. Stream channel. 2. Poor quality bedrock (NE BC and Alberta profile) or sediments along the stream banks. Definition of Initial Areas of Concern (Screening Criteria) 1. Stream channel showing evidence of previous lateral erosion. Additional Information used for refine the hazard occurrence areas 1. Field review data (documented in Table B-1). 2. Airphoto review 3. Review of aerial oblique photos taken during field visits. 4. Google Earth and other suitable imagery along the corridor.	Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
F _(i)	Triggering MechanismsLateral erosion is often an ongoing process, although significant shiftsin the channel position (or consequently rate of erosion) are often theresult of high flows due to high precipitation or seasonal freshet flows.Erosion rates can also be significantly influenced by anthropogenicactivities upstream in the channel such as river training or bridge piers.Natural processes and existing anthropogenic influences can beestimated, but new anthropogenic activities cannot.Potential Secondary Geohazard(s) TriggeredLateral erosion can trigger landslides due to undercutting.	If Triggering Mechanism is linked to historic database information, use the relevant frequency- magnitude data; otherwise use guideline such as; 1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1000 yrs

LATERAL EROSION

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	categories of landslides can be involved, from shallow slides through to deep-seated slides of various types.	Where probabilities apply to lateral erosion beyond the sagbend location.
V _(i) ¹	Description of Effects in Hazard Impact AreaPipelines may be exposed or cover removed by lateral erosion nearpipeline crossings due to lateral erosion beyond the sagbend.Pipelines running parallel to a stream may also be subject to erosion.Where the pipeline is undercut, loss of containment might occur forlong spans or where debris or large boulders impact the pipeline.Where large spans occur as a result of undercutting, vibration mayresult in fatigue and failure.Partial exposures may result in coatingdamage, denting, or abrasion damage.For standard burial depths and sagbends located within the zone ofpotential lateral stream migration, use V = 0.001, unless the exposurelengths would be expected to be in excess of 25 m, in which case useV = 0.1.A LoC event from lateral erosion was assumed to require exposure of	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard
	more than 25 m of pipeline based on preliminary (probably slightly conservative) assessments of lengths required for vibration fatigue or debris loading. For the purposes of this assessment, a channel width of 50 m was considered the minimum width which could potentially expose lengths in excess of 25 m. Where the proposed pipeline is parallel to a mobile stream, lateral migration of a smaller channel (<50 m) may result in exposures greater than 25 m depending on local conditions and this hazard was included where applicable.	occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 Mitigation Options² Options to Reduce Frequency 1. Install river training measures such as rock groynes, spurs, weirs or armour banks to control stream channel location at the crossing. However, these measures may not be successful in the long term and need to be approached with site specific studies and designs that include commitments for follow-up monitoring and maintenance. Options to Reduce Vulnerability 1. Locate sag bends behind long-term lateral migration channel limits established by hydrotechnical design. 2. Use routing to locate crossings in areas of channel less susceptible to lateral erosion. 3. Use trenchless methods to install the pipeline bellow the envelope of lateral erosion 4. Use heavy wall or concrete coated pipe to increase the resistance to damage in case of exposure. 	Armoured stream banks suitably designed; use, $M_{(i)} = 0.01$ River training measures suitably designed; use, $M_{(i)} = 0.01$ Sag bends beyond long-term hydrotechnical design limits; use, $M_{(i)} = 0.001$ Trenchless Methods enter/exit outside extents of lateral migration use $M_{(i)} = 0.001$ Heavy wall Pipe; use, $M_{(i)} = 0.1$ Concrete coating or protection; use, $M_{(i)} = 0.1$ Reroute; use,
	to March 7, 2012	M _(i) = 0.01 to 0.001 depending on distance and stream characteristics.

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

GEOHAZARD DESCRIPTION: LATERAL SPREADING

$F_{LOC(0)} = F_{LOC(0)} = F_{$

GOVERNING EQUATION	$F_{LOC(i)} =$	Frequency of a loss of containment event due to
RELATING THE FREQUENCY OF		geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT (LOC)	$ _{(i)} =$	Factor from 0 to 1 expressing the potential for the
EVENT RELATED TO	0	geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:	F _(i) =	Frequency of occurrence of the geohazard at location i
		expressed in events per year;
	V _(i) =	Vulnerability of the pipeline to loss of containment
		events expressed as a fraction of total geohazard
	Where;	occurrences that would result in loss of containment.
$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$		The unmitigated case assumes standard mainline
		construction and operation conditions.
	M _(i) =	Mitigation effects expressed as a reduction factor on
		either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
		geohazard occurrence or reduced potential for loss of
		containment due to geohazard occurrence due to
		potential site specific mitigation(s) applied at location i.

Image: General Process Description Permanent lateral ground displacements involving movement of material on nearly flat terrain due to liquefaction of strain softening typically under seismic conditions. Movement may be toward an unsupported slope or may be transient (Transient Ground Deformation). Movement rates are rapid, and can occur on very low gradient slopes where weak materials are present. Note that seismically triggered slides or slide movement on deep-seated or shallow to moderately deep slides are considered under those categories. 0 = Not Possible (Screening criteria not met) It coose/soft soil units, typically including sands, although interlayered deposits of silt and clay with high moisture content may be susceptible. 0.01 = Theoretically probable to occur at this location (screening criteria are only susceptible). 2. Slopes, even as gentle as 1° to 2°, may provide sufficient gradient to allow permanent downslope movement of liquefied materials. 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other other units. 2. Areas subject to seismic shaking of sufficient strength to result in liquefaction (Coastal Ranges and Rocky Mountains physiographic regions) 0.1 = Defined occurrence at this location. Weak geological units include: glacionacustrine soils, and 1.0 = Defined occurrence at this location or field confirmation, or both) Additional Information used for refine the hazard occurrence at this location, infirmation, or both) 1.0 = Defined occurrence at this location or field confirmation, or both) Image: Field Review data (documented in Table B-1). <	Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	I _(i)	 Permanent lateral ground displacements involving movement of material on nearly flat terrain due to liquefaction of strain softening typically under seismic conditions. Movement may be toward an unsupported slope or may be transient (Transient Ground Deformation). Movement rates are rapid, and can occur on very low gradient slopes where weak materials are present. Note that seismically triggered slides or slide movement on deep-seated or shallow to moderately deep slides are considered under those categories. Required Conditions for Occurrence Loose/soft soil units, typically including sands, although interlayered deposits of silt and clay with high moisture content may be susceptible. Slopes, even as gentle as 1° to 2°, may provide sufficient gradient to allow permanent downslope movement of liquefied materials. Earthquake ground motions sufficient to result in liquefaction. Definition of Initial Areas of Concern (Screening Criteria) Areas underlain by significant deposits of loose and weak geological units. Areas subject to seismic shaking of sufficient strength to result in liquefaction (Coastal Ranges and Rocky Mountains physiographic regions) Weak geological units include: glaciolacustrine soils, and glaciolacustrine soils, and glaciolacustrine soils, and Field Review data (documented in Table B-1). LIDAR datasets. Available airphoto imagery. Existing published mapping. 	 (Screening criteria not met) 0.01 = Theoretically probable to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field

LATERAL SPREADING

	Considerations for Assigning Value to Each Factor	Value to Factor
F _(i)	Triggering Mechanisms For the purposes of preliminary assessment, an estimated 12% peak ground acceleration (PGA) is considered necessary to trigger lateral spreading in combination with weak layers or materials. Use peak ground acceleration data presented in the Overall Geotechnical Report (AMEC, 2010). If weak materials are found during further investigations, this criteria will be reviewed. Potential Secondary Geohazard(s) Triggered	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as; 1 = once in 1 yr
	Disruption of drainage patterns and movement of larger masses can result in damming of streams, avulsion, and lateral erosion.	0.1 = once in 10 yrs 0.01 = once in 100 yrs 0.001 = once in 1000 yrs
V _(i) ¹	Description of Effects in Hazard Impact Area For cases where the pipeline route crosses a high angle slopes (>5°) area susceptible to liquefaction, use V = 1.0. For cases where the pipeline route crosses a low angle slopes (<5° and >1°) area susceptible to liquefaction, use V = 0.1.	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 <u>Mitigation Options</u>² <u>Options to Reduce Frequency</u> Ground improvement methods that could include methods such as pre- loading consolidation, dynamic compaction, vertical drains or construction of shear keys in shallow deposits. <u>Options to Reduce Vulnerability</u> Avoid routing in liquefaction zones by routing around or under. Routing options below may include HDD or other similar deep burial installations that avoid the hazard zone, although some areas may be too deep for this to be a potential solution. 	Ground Improvement; use, $M_{(i)} = 0.5$ Deep Burial (below slide – may include HDD); use, $M_{(i)} = 0.01$ Reroute; use, $M_{(i)} = 0.001$

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

ROCK FALL

GOVERNING EQUATION RELATING THE FREQUENCY OF A LOSS OF CONTAINMENT (LOC) EVENT RELATED TO GEOHAZARD IS DEFINED AS: $F_{LOC(i)} = I_{(i)} \ge F_{(i)} \ge V_{(i)} \ge M_{(i)}$	$F_{LOC(i)} = I_{(i)} = I_{(i)} = V_{(i)} = V_{(i)} = Where;$	Frequency of a loss of containment event due to geohazard at location I, expressed in events per year; Factor from 0 to 1 expressing the potential for the geohazard to occur at location i, Frequency of occurrence of the geohazard at location i expressed in events per year; Vulnerability of the pipeline to loss of containment events expressed as a fraction of total geohazard occurrences that would result in loss of containment. The unmitigated case assumes standard mainline construction and operation conditions. Mitigation effects expressed as a reduction factor on either V _(i) or F _(i) representing the resultant reduction in geohazard occurrence or reduced potential for loss of containment due to geohazard occurrence due to
		containment due to geohazard occurrence due to potential site specific mitigation(s) applied at location i.

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	General Process Description Direct fall and rolling rocks from rock bluffs, rock or rock cuts, and/or colluvium or soil slopes. For purposes of pipeline integrity review (LoC event), only particles 2 m or larger are considered. Such particles with suitable velocities at impact to affect the pipeline are assumed to be present unless otherwise known to be absent. Required Conditions for Occurrence The following are considered necessary to initiate a rock fall 1. Steep (>40°) colluvial slopes with suitably size particles that could be undermined by erosion; or 2. Natural steep rock outcrops or slopes with discontinuities that bound suitably large particles that might release; or, 3. Steep soil slopes (>40°) containing large boulders that could be released by erosion or undercutting. To initiate release, local slopes >40° are typically required. Definition of Initial Areas of Concern (Screening Criteria) 1. Slopes steeper than 40°. 2. Areas with shallow to no soil (bedrock outcrop sources). 3. Bouldery colluvium deposits or other boulder soil deposits (eg., some mountain tills). 4. Rock may run out to a shadow area defined as 27° below the source. Additional Information used for refine the hazard occurrence areas 1. Field review data (documented in Table B-1) and field photos.	 0 = Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
	 Analysis of LIDAR and aerial photo imagery. Published information on occurrences, if available. 	
F _(i)	Triggering Mechanisms Rockfall is typically the result of ongoing erosion of bluffs and steep colluvial slopes related to changes in moisture (storm events), temperature (freeze-thaw action), sliding, creep and erosion and seismic events. Suitably oriented and spaced discontinuity patterns are required to form rock blocks that may release. Often rockfall is an ongoing process and activity is defined as at least once per year (F = 1). Potential zones showing no active rockfall could be considered to produce events at a reduced scale related to major 100 year return period storms or significant seismic events if deemed appropriate. Areas	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as; 1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs

ROCK FALL

	with boulders that have grown over with moss and/or trees suggest	0.001 = once in 1000 yrs
	reduced or infrequent activity. Note that boulders may be present due to other glacial processes such as glacial erratic and may not be evidence of past rock fall.	
	Potential Secondary Geohazard(s) Triggered None.	
	Description of Effects in Hazard Impact Area Depletion Zone – Not applicable for routing.	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard
V _(i) ¹	Runout Zone – Standard cover depths for pipelines provide soil cover that will cushion the effects of direct rock impacts on the pipeline depending on block sizes and the location of the drop area vs. the rolling area. For buried infrastructure at standard depths use $V = 0.1$ to 1.0 for areas subject to direct falls or bouncing rock particles, and 0.01 to 0.1 for rolling rocks depending on potential block sizes, velocities and geometry.	occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC.
	Consideration for Above Ground Facilities – Due to the risk of high lateral impact loading, use V = 1.0 for surface facilities.	1.0 = Each occurrence of hazard would likely result in LOC.
	Mitigation Options ² 1. Options to Reduce Frequency	Mechanical rock support and/or scaling; use, M _(i) = 0.1
	 a. Scaling or mechanical support (rock anchors) of rock bluffs or soil slopes. Note that ongoing monitoring is required for the application of a modified vulnerability as weathering and erosion will produce additional unstable materials over time. b. Draped mesh or rock fall fences (depending on geometry, may be more appropriate to consider under vulnerability). Monitoring and 	Draped mesh or rock catch fences; use, M _(i) = 0.01 Deep Burial (established based
	maintenance required. c. Control excavations and natural erosion so that undercutting does not occur.	on maximum particle impact energy) and/or extra compaction; use, M _(i) = 0.01
M _(i)	 2. Options to Reduce Vulnerability a. Avoid areas subject to rock fall. b. Avoid above ground facilities in areas subject to rock fall. 	Diversion Berms; use, M _(i) = 0.1
	c. Increase depth of cover, provide concrete coating on pipeline, provide protection above the pipeline (reinforced concrete slabs, embedment in concrete, steel plates), deflector berms or fills, place pipeline in location where rock fall will project over grade or install portal canopy.	Heavy wall Pipe; use, M _(i) = 0.1
	d. Provide increased compaction of backfill or selected backfill to reduce penetration.	Concrete Coating or Protection; use, $M_{(i)} = 0.1$
		Protective Plates or Slabs; use, $M_{(i)} = 0.1$
		Portal Canopy; use, M _(i) = 0.001 Foregoing factors vary
Deviewala	to March 7 2012	according to local conditions.

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

SCOUR EROSION

GOVERNING EQUATION RELATING THE FREQUENCY OF	F _{LOC(i)} =	Frequency of a loss of containment event due to geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT (LOC) EVENT RELATED TO	I _(i) =	Factor from 0 to 1 expressing the potential for the geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:	F _(i) =	Frequency of occurrence of the geohazard at location i expressed in events per year;
	V _(i) =	Vulnerability of the pipeline to loss of containment events expressed as a fraction of total geohazard
$F_{\text{LOC}(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$	Where;	occurrences that would result in loss of containment. The unmitigated case assumes standard mainline construction and operation conditions.
	M _(i) =	Mitigation effects expressed as a reduction factor on either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in geohazard occurrence or reduced potential for loss of
		containment due to geohazard occurrence due to potential site specific mitigation(s) applied at location i.

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	 General Process Description Scour is the erosion of particles from a stream bed. The co- dependent process of in-filling may also occur, and the scour may be temporary, short term or permanent. Scour generally increases during high flows and at obstacles (eg., bridge piers), at bends and at channel confluences. Major controls include channel shape, velocity and volume of the moving water as well as the character of the stream bottom sediments (particle size). Sand wave movement is also included within the effects of scour. Generally scour occurs to some degree in all stream channels except that rates may be negligible in strong rock channels. Scour also includes removal of loose backfill under high flows such as in a bedrock trench. Required Conditions for Occurrence Stream channel except channels in hard rock with suitable backfill. Definition of Initial Areas of Concern (Screening Criteria) Any stream channel except channels in hard rock with suitable backfill. High scour may occur in stream channels with highly erodible bed materials (sand or silt on low to moderate gradient channels) and where high flows occur. Additional Information used for refine the hazard Occurrence areas Hydrotechnical studies. Field review data (documented in Table B-1). Review of aerial oblique photos taken during field visits. Google Earth and other suitable imagery along the corridor. River bottom bathymetry. Local area experience. 	 0 = Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)
F _(i)	Triggering Mechanisms Significant scour events (i.e. rate of erosion) are often the result of high flows due to high precipitation or seasonal freshet flows. Erosion rates can also be significantly influenced by anthropogenic activities upstream in the channel such as river training or installation of bridge piers. Natural processes and anthropogenic influences can be estimated, but future anthropogenic activities cannot. Significant scour events are typically linked to a given estimated runoff event varying from 25 to 200 year return period.	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as; 1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs

SCOUR EROSION

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
	Potential Secondary Geohazard(s) Triggered Scour can trigger land sliding on stream banks due to undercutting. Several categories of landslides can be involved, from shallow slides through to deep-seated slides of various types.	0.001 = once in 1000 yrs
V _(i) ¹	Description of Effects in Hazard Impact Area Pipelines may be exposed, or the cover material may be reduced, by scour at pipeline crossings. Where scour exposes or undermines the pipeline a loss of containment might occur where debris, large boulders, equipment or boats impact the pipeline. Where scour occurs along a significant length of the pipeline perpendicular to stream flow, long unsupported spans may be subject to vibration and fatigue related failure as a result of vortex shedding downstream of the pipe exposed in the stream. Partial exposures may result in coating damage, denting, or abrasion damage. For standard crossing burial depths within a zone of potential scour, use V = 0.001, unless the exposure lengths would be expected to be in excess of 25 m (large rivers only) ² , in which case use V = 0.1.	 0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 Mitigation Options³ Options to Reduce Frequency 1. Install channel lining materials such as riprap or concrete backfill (rock channels) to control scour at the crossing. However, such measures may not be successful in the long term and need to be approached with site specific studies and designs that include commitments for follow-up monitoring and maintenance. 2. Use routing to locate crossings in areas of channel less susceptible to scour. Options to Reduce Vulnerability 1. Construct the pipeline below the predicted maximum scour depth established based on site specific design using a long-term flow recurrence interval such as 1:100 or 1:200 year flows. 2. Install appropriately designed protective measures such as sills or riprap the channel to provide scour protection. Such measures may require maintenance and monitoring. 	Armoured / lined channel bottom; use, $M_{(i)} = 0.01$ Pipeline below maximum predicted scour depth for 1:100 or 1:200 year peak flows; use, $M_{(i)} = 0.001$ Trenchless Methods with depths beyond max theoretical scour depth; use $M_{(i)} = 0.001$ Heavy-wall Pipe; use, $M_{(i)} = 0.1$ Concrete Coated Pipe; use, $M_{(i)} = 0.1$ provided that maximum span length cannot be exceeded.

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For the purposes of LOC event evaluation, scour areas of concern are restricted to those areas that LOC is possible, and therefore watercourses with a channel width of 50 m or more at the crossing for the basis of areas of concern. Additional details around this assumption are discussed under Lateral Erosion.

³ For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

GEOHAZARD DESCRIPTION: SHALLOW TO MODERATELY DEEP SLIDES

GOVERNING EQUATION		F _{LOC(i)} =	Frequency of a loss of containment event due to
RELATING THE FREQUENCY OF		()	geohazard at location I, expressed in events per year;
A LOSS OF CONTAINMENT (LOC)		$I_{(i)} =$	Factor from 0 to 1 expressing the potential for the
EVENT RELATED TO			geohazard to occur at location i,
GEOHAZARD IS DEFINED AS:		F _(i) =	Frequency of occurrence of the geohazard at location i
			expressed in events per year;
		V _(i) =	
			events expressed as a fraction of total geohazard
$F_{LOC(i)} = I_{(i)} \times F_{(i)} \times V_{(i)} \times M_{(i)}$	Where;		occurrences that would result in loss of containment.
$\mathbf{I} \text{LOC}(i) = \mathbf{I}(i) \times \mathbf{I} (i) \times \mathbf{V}(i) \times \mathbf{IVI}(i)$			The unmitigated case assumes standard mainline
			construction and operation conditions.
		M _(i) =	Mitigation effects expressed as a reduction factor on
			either $V_{(i)}$ or $F_{(i)}$ representing the resultant reduction in
			geohazard occurrence or reduced potential for loss of
			containment due to geohazard occurrence due to
			potential site specific mitigation(s) applied at location i.

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
I _(i)	General Process Description Translational slides in soil and/or rock less than 10 to 15 m deep within weak geological units, generally on relatively steep slopes (as compared to deep-seated slides) and man-made cuts. Movement rates are typically variable, and dependent on material type. Runout lengths are typically less than 3 times the total height of the slide and the failed material behaves in a coherent manner (distinguishing factors between other failure mechanisms such as flow slides, rock fall, and debris flows). Toppling failures are discussed separately. Shallow slides often occur on deep-seated slide in the movement and geohazard risk assessment, such slides are included in the movement and geohazard conditions of the deep-seated slide. Required Conditions for Occurrence The combination of slope angle, pore pressure and strength along the sliding surface must allow for sliding to occur. Sliding typically occurs in weak geological materials such as glaciolacustrine, glaciomarine, or weak sedimentary rocks, or in disturbed, softened, weathered and/or colluvial materials. Groundwater pressure and surface water flow are often contributing factors. Slides may occur where slopes are subject to undercutting erosion by stream flow, cuts or fills on steep terrain, or where significant natural or man-made surface vegetation disturbances have occurred (logging, clearing or forest fires). Definition of Initial Areas of Concern (Screening Criteria) Areas within the proposed route corridor that have slopes equal to, or greater than, the assumed frictional strength of the surficial deposits (defined by \u03c4), define the initial areas of interest. For the purposes of screening the following critical slope angles are used, although it is noted that values could vary depending on actual geological conditions and numero	0 = Not Possible (Screening criteria not met) 0.01 = Theoretically possible to occur at this location (screening criteria are only partially met) 0.1 = Credible potential occurrence at this location. (All screening criteria met, and in region where other events are known to have occurred, but no evidence of occurrence at location) 1.0 = Defined occurrence at this location (documented past occurrence via publication or field confirmation, or both)

GEOHAZARD DESCRIPTION: SHALLOW TO MODERATELY DEEP SLIDES

Factor	Considerations for Assigning Value to Each Factor	Guidance for Assigning Value to Factor
F _(i)	Triggering Mechanisms Shallow to moderately deep landslides can include new slides, old re- activated slides and shallow slides on deeper slides (evaluated as part of the deep-seated slide geohazard). Sliding triggers, or changes in movement rates are typically linked to long-term precipitation patterns and/or slope profile changes due to anthropogenic causes or toe erosion by streamflow. Dominant factors related to triggering include high precipitation or runoff, erosion (high stream flow) or man-made cuts or fills. Potential Secondary Geohazard(s) Triggered	If Triggering Mechanism is linked to historic database information, use the relevant frequency-magnitude data; otherwise use guideline such as; 1 = once in 1 yr 0.1 = once in 10 yrs 0.01 = once in 100 yrs
	Landslide deposits can dam or divert streams and result in flooding or stream avulsion. Lateral erosion and scour in areas outside the previous stream channel through landslide debris or at the margins of the landslide deposit can occur.	0.001 = once in 1000 yrs
V _(i) ¹	 Description of Effects in Hazard Impact Area Depletion Zone and Slide Area – Significant soil depletion is expected in the upper portions of the landslide area. Retrogression may occur where the initial failure leaves a steep exposed headwall. Retrogression limits will be determined on a case by case basis based on regional slide morphology in similar terrain units. Damage is typically restricted to loss of cover soil, scratches or denting. Shallow slides are typically not sufficiently long to result in critical loading in an axial direction. For routing of a buried pipeline at standard cover depths through a potential depletion zone with movement parallel to the pipeline length use V = 0.001 except 0.01 for large slides. If the direction of expected movement is across pipeline and/or larger moderately deep seated slides are probable use V = 0.01 to 0.1. 	0 = Hazard occurrence would not result in LOC. 0.001 = 0.1% of hazard occurrences would likely result in LOC. 0.01 = 1 % of hazard occurrences would likely result in LOC. 0.1 = 10 % of hazard occurrences would likely result in LOC. 1.0 = Each occurrence of hazard would likely result in LOC.
M _(i)	 Mitigation Options² Options to Reduce Frequency 1. Could use stabilization berms, removal of crest materials, dewatering/drainage, erosion protection and surface water management. 2. Suitable design of grading along the RoW. Avoidance of oversteepened cut and fill areas from other projects. Options to Reduce Vulnerability 1. As appropriate, avoid slide areas. 2. Place the pipeline below the depth of sliding. 	$\label{eq:main_series} \begin{array}{l} \mbox{Minor slope and crest grading;} \\ \mbox{use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Major slope and crest grading;} \\ \mbox{use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Drainage and groundwater} \\ \mbox{control; use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Surface water control; use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Toe berm; use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Deep burial below slide; use,} \\ \mbox{M}_{(i)} = 0.01 \\ \mbox{Monitoring of slope stability} \\ \mbox{conditions; use,} \\ \mbox{M}_{(i)} = 0.1 \\ \mbox{Reroute; use,} \\ \mbox{M}_{(i)} = 0.01 \\ \mbox{Reroute; use,} \\ \mbox{M}_{(i)} = 0.001 \end{array}$

Revised to March 7, 2012

¹ Effects are described relative to a pipeline elements built using standard mainline pipe and construction methods.

² For locations where more than 1 mitigation option is chosen, factors are multiplicative, not additive.

APPENDIX B

List and Details of Geohazards

-List of geohazards by kilometre -List of geohazards by type -Details of geohazards

ID	Category	· Featu	re Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
459	SC	38	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
343	LM	38	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
383	SM	36	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
434	SC		North Saskatchewan River	2.58	3	1	0.01	0.1	1.00E-03	1	1.00E-06
373	SM	2	North Saskatchewan River west valley slope	3	4.1	0	0	0	1.00E+00	1	0.00E+00
435	SC		Riviere Qui Barre	62.8	62.96	1	0.01	0.001	1.00E-03	1	1.00E-08
326	LM		Riviere Qui Barre	62.8	62.96	1	0.01	0.001	1.00E-03	1	1.00E-08
327	LM	3	Pembina River	130.78	131.06	1	0.01	0.1	1.00E-03	1	1.00E-06
436	SC	3	Pembina River	130.78	131.06	1	0.01	0.1	1.00E-03	1	1.00E-06
516	SM		Paddle River East valley slope	137.18	137.48	1	0.1	0.01	1.00E-03	1	1.00E-06
437	SC		Paddle River	137.4	137.66	1	0.01	0.001	1.00E-03	1	1.00E-08
328	LM		Paddle River	137.4	137.66	1	0.01	0.001	1.00E-03	1	1.00E-08
329	LM	4	Little Paddle River	162.82	163.18	1	0.01	0.001	1.00E-03	1	1.00E-08
438	SC	4	Little Paddle River	162.82	163.18	1	0.01	0.001	1.00E-03	1	1.00E-08
59	DS	5	Swan Hills southeast of Whitecourt	177.52	183.94	1	0.001	0.1	1.00E-02	1	1.00E-06
530	SM		Swan Hills Area East of Whitecourt	183.5	183.8	0.1	0.01	0.01	1.00E-03	1	1.00E-08
330	LM	7	Athabasca River	186.18	187.02	1	0.1	0.1	1.00E-03	1	1.00E-05
439	SC	7	Athabasca River	186.18	187.02	1	0.01	0.1	1.00E-03	1	1.00E-06
60	DS	9	North approach to Athabasca River	187	187.14	0	0	0	1.00E+00	1	0.00E+00
374	SM	8	North approach to Athabasca River	187	187.14	1	1	0.001	1.00E-03	1	1.00E-06
527	DS		East approach slope to Sakwatamau River	198.75	199.1	1	1	1	1.00E-05	1	1.00E-05
440	SC	10	Sakwatamau River	199.06	200.16	1	0.01	0.001	1.00E-03	1	1.00E-08
331	LM	10	Sakwatamau River	199.06	200.16	1	0.01	0.001	1.00E-03	1	1.00E-08
375	SM	11	Narrow corridor near Sakwatamau River	200.16	202.26	1	0.1	0.01	1.00E-03	1	1.00E-06
376	SM	12	Tributary to Chickadee Creek valley slopes	215.16	215.56	0.1	0.1	0.001	1.00E-02	1	1.00E-07
441	SC	13	Chickadee Creek	218.46	218.62	1	0.01	0.001	1.00E-03	1	1.00E-08
332	LM	13	Chickadee Creek	218.46	218.62	1	0.01	0.001	1.00E-03	1	1.00E-08
333	LM	14	Two Creek	241.2	242.4	1	0.01	0.001	1.00E-03	1	1.00E-08
442	SC	14	Two Creek	241.2	242.4	1	0.01	0.001	1.00E-03	1	1.00E-08
528	SM		East of Two Creek	241.5	241.65	0	1	0.01	1.00E-03	1	0.00E+00
529	SM		East approach slopes of Two Creek	241.65	241.85	0	0.1	0.001	1.00E-02	1	0.00E+00
377	SM	15	East approach slope to losegun River	257.96	258.2	0.1	0.1	0.001	1.00E-02	1	1.00E-07

ID	Category	· Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	МО	FManual	FLOC
443	SC	17	losegun River	258.2	258.48	1	0.01	0.001	1.00E-03	1	1.00E-08
334	LM	17	losegun River	258.2	258.48	1	0.01	0.001	1.00E-03	1	1.00E-08
426	SM		West approach slope to losegun River	258.48	259.06	0.1	0.1	0.001	1.00E-03	1	1.00E-08
61	DS	19	East Approach to Little Smoky River	289.7	290.1	0.1	0.01	1	1.00E-03	10	1.00E-06
378	SM		East Approach slope to Little Smoky River	289.72	290.02	0.1	0.01	0.01	1.00E-02	10000	1.00E-07
444	SC	20	Little Smoky River crossing	290.02	290.56	1	0.01	0.1	1.00E-03	1	1.00E-06
335	LM	20	Little Smoky River crossing	290.02	290.56	1	0.1	0.1	1.00E-03	1	1.00E-05
62	DS	21	West Approach Slope to Little Smoky River	290.6	291.1	1	0.01	1	1.00E-03	10	1.00E-05
445	SC	22	Waskahigan River	317.1	317.9	1	0.01	0.001	1.00E-03	1	1.00E-08
336	LM	22	Waskahigan River	317.1	317.9	1	0.01	0.001	1.00E-03	1	1.00E-08
446	SC		Incised creek valley draining to north	331.64	331.76	1	0.01	0.001	1.00E-03	1	1.00E-08
447	SC		Incised creek valley draining to north	334.5	334.58	1	0.01	0.001	1.00E-03	1	1.00E-08
337	LM	23	Deep Valley Creek	337.9	338.36	1	0.1	0.001	1.00E-03	1	1.00E-07
448	SC	23	Deep Valley Creek	337.9	338.36	1	0.01	0.001	1.00E-03	1	1.00E-08
517	DS		Deep Valley Creek West valley slopes	338.78	339.42	1	1	0.1	1.00E-04	1	1.00E-05
518	SM		Tributrary to Deep Valley Creek East valley slopes	339.86	340.06	1	1	0.001	1.00E-02	1	1.00E-05
449	SC	24	Tributary to Deep Valley Creek	340.06	340.22	1	0.01	0.001	1.00E-03	1	1.00E-08
338	LM	24	Tributary to Deep Valley Creek	340.06	340.222	1	0.01	0.001	1.00E-03	1	1.00E-08
519	SM		Tributrary to Deep Valley Creek West valley slopes	340.22	340.34	1	1	0.001	1.00E-02	1	1.00E-05
520	SM		West of Tributary to Deep Valley Creek	340.34	341	0.1	1	0.01	1.00E-04	0.1	1.00E-07
521	SM		Creek crossing west of tributary to Deep Valley Creek	341	341.42	1	1	0.01	1.00E-04	0.1	1.00E-06
522	SC		Creek crossing west of tributary to Deep Valley Creek	341.32	341.34	1	0.01	0.001	1.00E-03	1	1.00E-08
450	SC		Tributaries to Simonette	353.56	353.58	1	0.01	0.001	1.00E-03	1	1.00E-08
451	SC		Tributaries to Simonette	354.58	354.62	1	0.01	0.001	1.00E-03	1	1.00E-08
452	SC		Tributaries to Simonette	355.18	355.22	1	0.01	0.001	1.00E-03	1	1.00E-08
453	SC		Tributaries to Simonette	356.38	356.4	1	0.01	0.001	1.00E-03	1	1.00E-08
454	SC		Tributaries to Simonette	357.26	357.32	1	0.01	0.001	1.00E-03	1	1.00E-08
339	LM	27	Simonette River	358.94	359.46	1	0.1	0.1	1.00E-03	1	1.00E-05
455	SC	27	Simonette River	358.94	359.46	1	0.01	0.1	1.00E-03	1	1.00E-06
63	DS	28	East valley slope of Latornell River	370.94	371.28	1	1	0.1	1.00E-05	0.01	1.00E-06
456	SC	29	Latornell River	371.26	371.3	1	0.01	0.001	1.00E-03	1	1.00E-08

ID	Category	Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
340	LM	29	Latornell River	371.26	371.3	1	0.01	0.001	1.00E-03	1	1.00E-08
495	DS	28	West valley slope of Latornell River	371.3	372	1	1	0.1	1.00E-05	0.01	1.00E-06
64	DS	30	West of Latornell River	372.1	374	0.1	0.1	1	1.00E-03	1	1.00E-05
380	SM	32	Tributary to Smoky River valley slopes	395.02	395.22	1	0.1	0.001	1.00E-02	1	1.00E-06
341	LM	31	Tributary to Smoky River	395.1	395.12	1	0.01	0.001	1.00E-03	1	1.00E-08
457	SC	31	Tributary to Smoky River	395.1	395.12	1	0.01	0.001	1.00E-03	1	1.00E-08
381	SM		Tributary to Smoky River valley slopes	403.58	403.96	0.01	0.01	0.001	1.00E-02	1	1.00E-09
382	SM		East valley slope of Smoky River	419.4	419.9	0.01	0.01	0.01	1.00E-02	1	1.00E-08
65	DS	33	East valley slope of Smoky River	419.5	419.9	0.1	0.01	1	1.00E-03	1	1.00E-06
458	SC	34	Smoky River floodplain	420.18	421.74	1	0.01	0.1	1.00E-03	1	1.00E-06
342	LM	34	Smoky River floodplain	420.18	421.74	1	0.1	0.1	1.00E-04	10	1.00E-06
66	DS	35	West valley slope of Smoky River	421.7	422.28	1	1	0.1	1.00E-04	1	1.00E-05
384	SM	39	Big Mountain Creek valley slopes	428.16	429.52	1	0.1	0.01	1.00E-02	10	1.00E-05
460	SC	41	Big Mountain Creek	428.92	429.28	1	0.01	0.001	1.00E-03	1	1.00E-08
344	LM	41	Big Mountain Creek	428.92	429.28	1	0.01	0.001	1.00E-03	1	1.00E-08
385	SM	42	Bald Mountain Creek west valley slopes	446.4	446.76	0.1	0.1	0.001	1.00E-03	1	1.00E-08
461	SC	43	Bald Mountain Creek	446.64	446.72	1	0.01	0.001	1.00E-03	1	1.00E-08
345	LM	43	Bald Mountain Creek	446.64	446.72	1	0.01	0.001	1.00E-03	1	1.00E-08
462	SC		Wilson Creek	453.66	453.86	1	0.01	0.001	1.00E-03	1	1.00E-08
346	LM		Wilson Creek	453.66	453.86	1	0.01	0.001	1.00E-03	1	1.00E-08
386	SM		Tributary to Iroquois Creek valley slopes	458.76	459	1	1	0.001	1.00E-02	1	1.00E-05
387	SM		Pinto Creek meander bend 1	470.84	471.08	1	1	0.01	1.00E-03	1	1.00E-05
424	SM		Pinto Creek meander bend 2	473	473.5	1	1	0.01	1.00E-03	1	1.00E-05
68	SM	46	Pinto Creek East valley slope	474.02	474.12	1	1	0.01	1.00E-04	0.1	1.00E-06
463	SC		Pinto Creek	474.2	474.28	1	0.01	0.001	1.00E-03	1	1.00E-08
427	SM		Pinto Creek West valley slope	474.34	474.44	1	1	0.01	1.00E-03	1	1.00E-05
69	DS	47	Wapiti River area	494.9	495.2	0	0	0	1.00E+00	1	0.00E+00
464	SC		Wapiti River	494.94	495.6	0.1	0.01	0.1	1.00E-03	1	1.00E-07
388	SM		Ridge on West Side of Wapiti River	496.3	497	0.1	0.01	0.01	1.00E-01	100	1.00E-06
465	SC		South Redwillow River	534.12	534.18	0.1	0.01	0.001	1.00E-03	1	1.00E-09
347	LM		South Redwillow River	534.12	534.18	0.1	0.001	0.001	1.00E-03	1	1.00E-10
466	SC		Kinuseo Creek	568.2	568.26	1	0.01	0.001	1.00E-03	1	1.00E-08
389	SM	48	Quintette Mountain area rock cuts	568.4	581.78	0.1	0.1	0.001	1.00E-01	1	1.00E-06
4	AVU	49	Quintette Creek	577.3	577.46	1	0.1	0.001	1.00E-02	1	1.00E-06
245	DF	50	Tributary to Kinuseo Creek	579.94	580.04	0.01	0.01	0.01	1.00E-02	1	1.00E-08

ID	Category	/ Featu	re Location	KP (Re ^s Start	v V) End	OF	EF	VF	мо	FManual	FLOC
348	LM	51	Kinuseo Creek near alignment	580.7	581.8	0.01	0.001	0.1	1.00E+00	1	1.00E-06
246	DF		Five Cabin Creek	582.16	583.1	1	0.1	0.01	1.00E-02	1	1.00E-05
5	AVU	52	Five Cabin Creek	582.16	583.1	1	0.1	0.01	1.00E-02	1	1.00E-05
349	LM	53	Kinuseo Creek near alignment	587.74	587.74	0.1	0.01	0.1	1.00E-02	1	1.00E-06
497	AVU		Tributary to Kinuseo	588.86	589.6	1	0.1	0.001	1.00E-02	1	1.00E-06
467	SC		Kinuseo Creek	590.3	590.68	1	0.01	0.001	1.00E-03	1	1.00E-08
428	LM	53	Kinuseo Creek	590.3	590.68	1	0.1	0.001	1.00E-03	1	1.00E-07
390	SM	54	Tributary of Murray River	598.82	598.98	1	1	0.01	1.00E-03	1	1.00E-05
468	SC		Murray River	600.8	600.92	1	0.01	0.1	1.00E-03	1	1.00E-06
350	LM		Murray River	600.8	600.92	1	0.1	0.01	1.00E-03	0.1	1.00E-06
392	SM	56	Hook Creek east approach slopes	604.6	604.64	1	1	0.001	1.00E-03	1	1.00E-06
351	LM	57	Hook Creek	604.64	604.76	1	0.1	0.001	1.00E-03	1	1.00E-07
469	SC	57	Hook Creek	604.64	604.76	1	0.01	0.001	1.00E-03	1	1.00E-08
545	SM		Hook Creek west approach slope	604.76	604.8	1	1	0.001	1.00E-03	1	1.00E-06
226	AVA		Pass through Rockies	614	614.2	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
227	AVA		Pass through Rockies	615	615.2	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
247	DF	58	Pass through Rockies	616.12	616.54	0	0.001	0.01	1.00E+00	1	0.00E+00
6	AVU		Pass through Rockies	617.7	618.52	0.1	0.01	0.001	1.00E+00	1	1.00E-06
228	AVA	59	Pass through Rockies	618.5	618.6	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
393	SM	60	Pass through Rockies	619.2	625.7	0.1	0.1	0	1.00E+00	1	0.00E+00
229	AVA	59	Pass through Rockies	622.1	622.25	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
33	RF	63	Pass through Rockies	623.55	623.7	0.1	0.1	0.01	1.00E-02	0.1	1.00E-06
230	AVA	59	Pass through Rockies	624.3	624.32	0.01	0.001	0.001	1.00E+00	1	1.00E-08
231	AVA	59	Pass through Rockies	624.48	624.54	0.01	0.001	0.001	1.00E+00	1	1.00E-08
232	AVA	59	Pass through Rockies	625.5	625.6	0.01	0.001	0.001	1.00E+00	1	1.00E-08
394	SM	64	Headwaters of Hominka River	627.3	628.7	0.1	0.1	0	1.00E+00	1	0.00E+00
248	DF		Headwaters of Missinka River	629.7	629.8	0	0.001	0.01	1.00E+00	1	0.00E+00
249	DF		Headwaters of Missinka River	630.35	630.4	0	0.001	0.01	1.00E+00	1	0.00E+00
250	DF		Missinka River	632.1	632.2	0	0.001	0.01	1.00E+00	1	0.00E+00
251	DF	69	Tributary to Missinka River	633.92	633.96	0.01	0.01	0.01	1.00E-02	1	1.00E-08
252	DF	69	Tributary to Missinka River	635.06	635.12	0.1	0.01	0.01	1.00E-02	1	1.00E-07
395	SM	70	Valley slopes of Tributary to Missinka River	636.7	639.3	0.1	0.1	0	1.00E+00	1	0.00E+00
253	DF	69	Tributary to Missinka River	637.14	637.2	0.1	0.01	0.01	1.00E-02	1	1.00E-07
254	DF	69	Tributary to Missinka River	637.3	637.3	0	0.001	0.01	1.00E+00	1	0.00E+00

ID	Category	Featur	e Location	KP (Re Start	v V) End	OF	EF	VF	мо	FManual	FLOC
233	AVA	71	Valley slopes of Tributary to Missinka River	637.9	638	0	0	0	1.00E+00	1	0.00E+00
7	AVU	68	Tributary to Missinka River	638.48	638.64	0.1	0.01	0.001	1.00E-02	1	1.00E-08
255	DF	69	Tributary to Missinka River	638.48	638.64	0.1	0.01	0.01	1.00E-02	1	1.00E-07
234	AVA	71	Valley slopes of Tributary to Missinka River	638.9	639.3	0.1	0.001	0.001	1.00E+00	1	1.00E-07
256	DF	69	Tributary to Missinka River	638.9	638.9	0	0.001	0.01	1.00E+00	1	0.00E+00
257	DF		Tributary to Missinka River	639.58	639.6	0.01	0.01	0.01	1.00E-02	1	1.00E-08
396	SM	72	Missinka River valley slopes	642.68	643.7	0.1	0.1	0	1.00E+00	1	0.00E+00
470	SC		Missinka River	643.38	643.46	1	0.01	0.001	1.00E-03	1	1.00E-08
397	SM	73	Missinka River area	643.7	668.7	0.1	0.1	0	1.00E+00	1	0.00E+00
258	DF		Tributary to Missinka River	645.94	645.96	0.01	0.01	0.01	1.00E-02	1	1.00E-08
259	DF		Tributary to Missinka River	646.7	647.24	0.01	0.01	0.01	1.00E-02	1	1.00E-08
471	SC		Missinka River	648.1	648.2	1	0.01	0.001	1.00E-03	1	1.00E-08
260	DF		Tributary to Missinka River	652.1	652.56	0.1	0.01	0.01	1.00E-02	1	1.00E-07
498	AVU		Tributary to Missinka River	652.1	652.56	1	0.1	0.001	1.00E-02	1	1.00E-06
261	DF		Tributary to Missinka River	655.1	655.22	0.1	0.01	0.01	1.00E-02	1	1.00E-07
262	DF		Tributary to Missinka River	656.26	656.36	0.1	0.01	0.01	1.00E-02	1	1.00E-07
263	DF		Tributary to Missinka River	659.66	659.76	0.1	0.01	0.01	1.00E-02	1	1.00E-08
264	DF		Tributary to Missinka River	661.36	661.46	0.1	0.01	0.01	1.00E-02	1	1.00E-07
265	DF		Tributary to Missinka River	662.02	662.26	0.1	0.01	0.01	1.00E-02	1	1.00E-07
266	DF		Tributary to Missinka River	665.22	665.3	0.1	0.01	0.01	1.00E-02	1	1.00E-07
267	DF		Tributary to Missinka River	666.46	666.54	0.1	0.01	0.01	1.00E-02	1	1.00E-07
268	DF		Tributary to Missinka River	667.82	668.58	0	0.001	0.01	1.00E+00	1	0.00E+00
352	LM	77	Parsnip River	673.6	674.14	1	0.1	0.1	1.00E-03	1	1.00E-05
472	SC	77	Parsnip River	673.6	674.14	1	0.01	0.1	1.00E-03	1	1.00E-06
398	SM	75	West of Parsnip River	673.84	675.24	0.1	0.1	0	1.00E+00	1	0.00E+00
399	SM	78	West of Wichcika Creek	682	688	0.1	0.1	0	1.00E+00	1	0.00E+00
353	LM	82	Tributary to Chuchinka Creek near alignment	689.8	700.8	0	0	0	1.00E+00	1	0.00E+00
400	SM	81	Tributary to Chuchinka Creek area	689.8	700.8	0.1	0.1	0	1.00E+00	1	0.00E+00
8	AVU	82	Tributary to Chuchinka Creek	692.06	692.64	0.1	0.01	0.001	1.00E+00	1	1.00E-06
494	LM		Tributary to Chuchinka Creek	705.66	705.86	1	0.1	0.001	1.00E-03	1	1.00E-07
401	SM	84	Angusmac Creek East Valley Slope	712.66	713.16	1	0.1	0.001	1.00E-02	10	1.00E-06
354	LM	86	Angusmac Creek	713.16	713.44	1	1	0.001	1.00E-03	1	1.00E-06
473	SC	86	Angusmac Creek	713.16	713.44	1	0.01	0.001	1.00E-03	1	1.00E-08

ID	Category	· Featur	re Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
499	SM	84	Angusmac Creek West Valley Slopes	713.55	713.9	1	0.1	0.001	1.00E-02	10	1.00E-06
474	SC	87	Crooked River	720.88	721.36	1	0.01	0.001	1.00E-03	1	1.00E-08
355	LM	87	Crooked River	720.88	721.36	1	0.1	0.001	1.00E-03	1	1.00E-07
356	LM	90	Muskeg River	750.8	750.9	1	0.01	0.001	1.00E-03	1	1.00E-08
475	SC	90	Muskeg River	750.8	750.9	1	0.01	0.001	1.00E-03	1	1.00E-08
357	LM	91	Salmon River	765.44	765.9	1	1	0.01	1.00E-03	1	1.00E-05
476	SC	91	Salmon River	765.44	765.9	1	0.01	0.001	1.00E-03	1	1.00E-08
402	SM	92	West valley slope of Salmon River	765.9	766.14	1	1	0.001	1.00E-03	1	1.00E-06
523	SM		Tributary to Beaver Lake	782.38	782.58	0.1	0.1	0.001	1.00E-03	1	1.00E-08
403	SM		Necoslie River valley slopes	818.92	819.32	1	0.1	0.01	1.00E-03	1	1.00E-06
477	SC		Necoslie River	819.32	819.46	1	0.01	0.001	1.00E-03	1	1.00E-08
70	DS	94	Stuart River East valley slope	824.3	824.6	0.01	0.001	1	1.00E-03	1	1.00E-08
478	SC		Stuart River	824.76	825.08	1	0.01	0.1	1.00E-03	1	1.00E-06
71	DS	94	Stuart River West valley slope	825	825.5	0.01	0.001	0.1	1.00E-01	1	1.00E-07
404	SM	95	Stuart River West valley slope	825.02	825.08	1	1	0.1	1.00E-04	0.1	1.00E-05
524	SM		Sutherland River East valley slope	859.24	859.4	1	1	0.001	1.00E-03	1	1.00E-06
500	SC		Sutherland River	859.4	859.48	1	0.01	0.001	1.00E-03	1	1.00E-08
515	LM		Maxan Creek	951.2	951.58	1	0.01	0.001	1.00E-03	1	1.00E-08
405	SM	98	Klo Creek East valley slopes	977.34	977.96	1	0.1	0.001	1.00E-03	1	1.00E-07
546	SM		Klo Creek east approach Lower slopes	978.3	978.44	1	0.1	0.001	1.00E-03	1	1.00E-07
479	SC	97	Klo Creek	978.44	978.68	1	0.01	0.001	1.00E-03	1	1.00E-08
358	LM	97	Klo Creek	978.44	978.68	1	0.1	0.001	1.00E-03	1	1.00E-07
501	SM	98	Klo Creek West valley slopes	978.68	978.72	1	0.1	0.001	1.00E-03	1	1.00E-07
359	LM		Buck Creek	989.78	990.16	1	0.1	0.001	1.00E-03	1	1.00E-07
480	SC		Buck Creek	989.78	990.16	1	0.01	0.001	1.00E-03	1	1.00E-08
481	SC		Owen Creek	1005.2	1005.4	0	0.01	0.001	1.00E-03	1	0.00E+00
541	SM		Owen Creek East Approach Slopes	1006.58	1006.7	1	0.01	0.001	1.00E-03	1	1.00E-08
532	LM		Owen Creek	1006.7	1006.72	1	0.01	0.001	1.00E-03	1	1.00E-08
323	DS		West of Owen Creek	1006.7	1007.1	0	0.1	0.1	1.00E-03	1	0.00E+00
543	SM		Owen Creek West Approach Slopes	1006.72	1006.8	0.1	0.01	0.001	1.00E-02	1	1.00E-08
534	SM		Fenton Creek East Approach Slope	1012.74	1012.78	0.1	0.01	0.001	1.00E-03	1	1.00E-09
482	SC		Fenton Creek	1012.78	1012.8	1	0.01	0.001	1.00E-03	1	1.00E-08
533	LM		Fenton Creek	1012.78	1012.8	1	0.1	0.001	1.00E-03	1	1.00E-07
542	SM		Fenton Creek West Approach Slope	1012.8	1012.86	0.1	0.01	0.001	1.00E-03	1	1.00E-09
540	SM		24.5 Mile Creek East approach slope	1018.36	1018.4	1	0.01	0.001	1.00E-03	1	1.00E-08

ID	Category	Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
539	LM		24.5 Mile Creek	1018.4	1018.42	1	0.1	0.001	1.00E-05	1	1.00E-09
406	SM	100	Lamprey Creek East valley slopes	1021	1022	0	0	0	1.00E-03	1	0.00E+00
537	SM		Lamprey Creek East approach slope	1024.36	1024.66	1	0.01	0.001	1.00E-04	1	1.00E-09
483	SC		Lamprey Creek	1024.66	1024.84	1	0.01	0.001	1.00E-03	1	1.00E-08
535	LM		Lamprey Creek	1024.66	1024.84	1	0.1	0.001	1.00E-03	1	1.00E-07
407	SM	101	Cedric Creek valley slopes	1028.3	1029.1	0	0	0	1.00E-03	1	0.00E+00
360	LM	102	Cedric Creek	1028.45	1028.55	0	0	0	1.00E-03	1	0.00E+00
485	SC	102	Cedric Creek	1028.45	1028.55	0	0	0	1.00E-03	1	0.00E+00
538	SC		Cedric Creek	1032.72	1032.74	0.1	0.01	0.001	1.00E-03	1	1.00E-09
408	SM	103	Side slopes of Morice River valley	1035.1	1038.1	0	0.1	0.01	1.00E-03	1	0.00E+00
484	SC		Morice River	1043.06	1043.42	1	0.01	0.1	1.00E-03	1	1.00E-06
544	LM		Morice River	1043.06	1043.42	1	0.01	0.1	1.00E-03	1	1.00E-06
9	AVU	105	Crystal Creek	1049	1049.36	1	0.1	0.01	1.00E-03	1	1.00E-06
269	DF	106	Crystal Creek	1049	1049.36	1	0.1	0.01	1.00E-03	1	1.00E-06
270	DF	107	Tributary to Gosnell Creek	1055.02	1055.1	0.1	0.01	0.01	1.00E-02	1	1.00E-07
271	DF	107	Tributary to Gosnell Creek	1057.34	1057.72	0.1	0.01	0.01	1.00E-02	1	1.00E-07
272	DF		Tributary to Gosnell Creek	1058.24	1058.7	0.1	0.01	0.01	1.00E-02	1	1.00E-07
273	DF		Tributary to Gosnell Creek	1059.6	1060	0.01	0.01	0.01	1.00E-02	1	1.00E-08
10	AVU		Tributary to Gosnell Creek	1061.82	1062	0.01	0.001	0.001	1.00E+00	1	1.00E-08
361	LM	108	Gosnell Creek	1063.76	1064.08	1	0.1	0.001	1.00E-03	1	1.00E-07
486	SC	108	Gosnell Creek	1063.76	1064.08	1	0.01	0.001	1.00E-03	1	1.00E-08
274	DF	110	Tributary to Burnie River Fan	1071.06	1072.06	0.1	0.01	0.01	1.00E-02	1	1.00E-07
11	AVU	109	Tributary to Burnie River Fan	1071.06	1072.06	1	0.01	0.001	1.00E-02	1	1.00E-07
409	SM	112	East approach slope to Burnie and Clore River valleys	1075.2	1075.65	0.1	0.01	0.01	1.00E-03	1	1.00E-08
526	LM		Tributary to Burnie River	1076.3	1076.56	1	0.01	0.001	1.00E-03	1	1.00E-08
525	SC		Tributary to Burnie River	1076.3	1076.56	1	0.01	0.001	1.00E-03	1	1.00E-08
362	LM	114	Clore River	1077.4	1077.94	1	1	1	1.00E-04	100	1.00E-04
487	SC	114	Clore River	1077.4	1077.94	1	0.01	0.1	1.00E-03	1	1.00E-06
235	AVA		Clore Tunnel - East Portal	1077.95	1078.55	0.01	0.001	0.1	1.00E+00	1	1.00E-06
236	AVA	117	Clore Tunnel - West Portal	1083.78	1084.6	0.01	0.001	0.001	1.00E+00	1	1.00E-08
410	SM	115	Tributary to Clore River and adjacent areas	1083.78	1084.6	1	0.1	0.001	1.00E-02	1	1.00E-06
34	RF	118	Clore Tunnel - West Portal	1083.78	1084.6	0.01	0.01	0.01	1.00E+00	1	1.00E-06
35	RF	118	Tributary to Clore River crossing	1084.9	1084.94	1	0.1	0	1.00E+00	1	0.00E+00

ID	Category	Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
275	DF	116	Tributary to Clore River crossing	1084.9	1084.94	0.01	0.01	0	1.00E-03	1	0.00E+00
237	AVA	117	Hoult Tunnel - East Portal	1084.95	1085.3	0	0.001	0.001	1.00E+00	1	0.00E+00
36	RF	118	Hoult Tunnel - East Portal	1085.64	1086.02	0.1	0.01	0.01	1.00E+00	1	1.00E-05
37	RF	120	Hoult Tunnel - West Portal	1090.08	1091.3	0.1	0.01	0.01	1.00E+00	1	1.00E-05
238	AVA	119	Hoult Tunnel - West Portal	1090.08	1091.3	0.01	0.001	0.001	1.00E+00	1	1.00E-08
276	DF	121	Hoult Creek	1092.02	1092.08	0.01	0.01	0	1.00E-03	1	0.00E+00
38	RF	122	Hoult Creek	1092.02	1092.08	0.001	0.001	1	1.00E+00	1	1.00E-06
363	LM	123	Hoult Creek	1092.02	1092.08	0.01	0.001	0.001	1.00E-03	1	1.00E-11
411	SM	124	Hoult Creek and Upper Kitimat River valley	1092.12	1106.42	0.1	0.1	0.001	1.00E-02	10	1.00E-07
277	DF	121	Hoult Creek Valley	1093.1	1093.12	1	0.1	0.1	1.00E-04	1	1.00E-06
502	DF	121	Hoult Creek Valley	1094.08	1094.1	0.1	0.01	0.1	1.00E-02	1	1.00E-06
240	AVA	125	Hoult Creek Valley	1094.48	1095.1	1	0.01	0.001	1.00E-02	1	1.00E-07
278	DF	121	Hoult Creek Valley	1094.48	1095.1	1	0.1	0.01	1.00E-02	1	1.00E-05
39	RF	122	Hoult Creek Valley	1094.48	1095.1	1	0.01	0.01	1.00E-02	1	1.00E-06
12	AVU		Hoult Creek Valley	1094.48	1095.1	1	0.1	0.001	1.00E-02	1	1.00E-06
503	AVU		Hoult Creek Valley	1095.1	1095.38	1	0.1	0.001	1.00E-02	1	1.00E-06
241	AVA	125	Hoult Creek Valley	1095.1	1095.38	0.1	0.01	0.001	1.00E-02	1	1.00E-08
40	RF	122	Hoult Creek Valley	1095.1	1095.38	1	0.01	0.01	1.00E-02	1	1.00E-06
279	DF	121	Hoult Creek Valley	1095.1	1095.38	1	0.1	0.01	1.00E-02	1	1.00E-05
41	RF	122	Hoult Creek Valley	1095.38	1095.78	1	0.01	0.01	1.00E-02	1	1.00E-06
13	AVU		Hoult Creek Valley	1095.38	1095.78	1	0.1	0.001	1.00E-02	1	1.00E-06
280	DF	121	Hoult Creek Valley	1095.38	1095.78	0.1	0.01	0.1	1.00E-02	1	1.00E-06
14	AVU		Hoult Creek Valley	1095.82	1096.84	1	0.1	0.001	1.00E-02	1	1.00E-06
42	RF	122	Hoult Creek Valley	1095.82	1096.84	1	0.01	0.01	1.00E-02	1	1.00E-06
281	DF	121	Hoult Creek Valley	1095.82	1096.84	1	0.1	0.01	1.00E-02	1	1.00E-05
242	AVA	125	Hoult Creek Valley	1095.82	1096.84	0.1	0.01	0.001	1.00E-02	1	1.00E-08
282	DF	121	Hoult Creek Valley	1096.84	1097.06	0.1	0.01	0.1	1.00E-02	1	1.00E-06
504	AVU		Hoult Creek Valley	1096.84	1097.06	1	0.1	0.001	1.00E-02	1	1.00E-06
43	RF	122	Hoult Creek Valley	1096.84	1097.06	1	0.01	0.01	1.00E-02	1	1.00E-06
283	DF	121	Hoult Creek Valley	1097.06	1097.2	0.1	0.01	0.1	1.00E-02	1	1.00E-06
505	AVU		Hoult Creek Valley	1097.06	1097.2	1	0.1	0.001	1.00E-02	1	1.00E-06
44	RF	122	Hoult Creek Valley	1097.06	1097.2	1	0.01	0.01	1.00E-02	1	1.00E-06
509	RF	122	Hoult Creek Valley	1097.22	1097.38	1	0.01	0.01	1.00E-02	1	1.00E-06
508	AVU		Hoult Creek Valley	1097.22	1097.38	1	0.1	0.001	1.00E-02	1	1.00E-06

ID	Category	/ Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
506	DF	121	Hoult Creek Valley	1097.22	1097.38	0.1	0.01	0.1	1.00E-02	1	1.00E-06
511	RF	122	Hoult Creek Valley	1097.38	1097.48	1	0.01	0.01	1.00E-02	1	1.00E-06
510	AVU		Hoult Creek Valley	1097.38	1097.48	1	0.1	0.001	1.00E-02	1	1.00E-06
507	DF	121	Hoult Creek Valley	1097.38	1097.48	0.1	0.01	0.1	1.00E-02	1	1.00E-06
284	DF	121	Hoult Creek Valley	1097.48	1098.04	1	0.1	0.1	1.00E-03	1	1.00E-05
243	AVA	125	Hoult Creek Valley	1097.48	1098.04	1	0.01	0.001	1.00E-03	1	1.00E-08
45	RF	123	Hoult Creek Valley	1097.48	1098.04	1	0.01	0.01	1.00E-03	1	1.00E-07
15	AVU		Hoult Creek Valley	1097.48	1098.04	1	0.1	0.001	1.00E-03	1	1.00E-07
412	SM	128	Hunter Creek valley slopes	1099.05	1104.2	0	0	0	1.00E-03	1	0.00E+00
46	RF	124	Hoult Creek Valley	1099.06	1099.28	0.01	0.001	0.001	1.00E+00	1	1.00E-08
285	DF	121	Hoult Creek Valley	1099.06	1099.28	0.01	0.01	0.01	1.00E+00	1	1.00E-06
16	AVU		Hoult Creek Valley	1099.06	1099.28	0.01	0.01	0.001	1.00E+00	1	1.00E-07
488	SC	126	Hunter Creek	1103.86	1104.22	1	0.01	0.001	1.00E-03	1	1.00E-08
286	DF	127	Hunter Creek	1103.86	1104.22	1	0.1	0.01	1.00E-03	1	1.00E-06
17	AVU	126	Hunter Creek	1103.86	1104.22	1	0.1	0.1	1.00E-04	1	1.00E-06
287	DF	130	Upper Kitimat River valley	1106.56	1106.62	0.1	0.01	0.1	1.00E-02	1	1.00E-06
413	SM	131	Upper Kitimat River valley	1106.62	1124.62	0.1	0.1	0.001	1.00E-02	1	1.00E-07
18	AVU	129	Upper Kitimat River valley	1106.96	1107.42	0.1	0.01	0.001	1.00E-02	1	1.00E-08
288	DF	130	Upper Kitimat River valley	1106.96	1107.42	0.1	0.1	0.01	1.00E-02	1	1.00E-06
47	RF	135	Upper Kitimat River valley	1106.96	1107.42	0.01	0.001	0.01	1.00E-02	1	1.00E-09
19	AVU	129	Upper Kitimat River valley	1107.52	1107.8	0.1	0.01	0.001	1.00E-02	1	1.00E-08
289	DF	130	Upper Kitimat River valley	1107.52	1107.8	1	0.1	0.01	1.00E-03	1	1.00E-06
20	AVU		Upper Kitimat River valley	1110.36	1110.44	1	0.1	0.001	1.00E-02	1	1.00E-06
290	DF	134	Upper Kitimat River valley	1110.36	1110.44	0.1	0.1	0.01	1.00E-02	1	1.00E-06
21	AVU		Upper Kitimat River valley	1113.38	1113.4	0.01	0.01	0.001	1.00E-02	1	1.00E-09
291	DF	134	Upper Kitimat River valley	1113.38	1113.4	0.1	0.1	0.1	1.00E-02	1	1.00E-05
292	DF	134	Upper Kitimat River valley	1113.7	1113.8	0.01	0.01	0.1	1.00E-02	1	1.00E-07
414	SM		North Side Kitimat River	1113.7	1113.82	1	1	0.001	1.00E-03	1	1.00E-06
22	AVU		Upper Kitimat River valley	1114.04	1114.12	0.1	0.01	0.001	1.00E-02	1	1.00E-08
293	DF	134	Upper Kitimat River valley	1114.04	1114.12	0.01	0.01	0.1	1.00E-02	1	1.00E-07
294	DF	134	Upper Kitimat River valley	1114.68	1114.74	0.1	0.01	0.1	1.00E-02	1	1.00E-06
23	AVU		Upper Kitimat River valley	1114.68	1114.74	1	0.1	0.001	1.00E-02	1	1.00E-06
48	RF	135	Upper Kitimat River valley	1114.86	1114.98	1	0.1	0.01	1.00E-02	1	1.00E-05
295	DF	134	Upper Kitimat River valley	1114.86	1114.98	0.1	0.01	0.1	1.00E-02	1	1.00E-06
24	AVU		Upper Kitimat River valley	1114.86	1114.98	0.1	0.01	0.001	1.00E-02	1	1.00E-08

ID	Category	/ Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
512	DF	134	Upper Kitimat River valley	1115.28	1115.32	0.01	0.01	0.1	1.00E-02	1	1.00E-07
513	DF	134	Upper Kitimat River valley	1115.6	1135.64	0.01	0.01	0.1	1.00E-02	1	1.00E-07
25	AVU		Upper Kitimat River valley	1116.28	1116.6	0.1	0.01	0.001	1.00E-02	1	1.00E-08
244	AVA	132	Upper Kitimat River valley	1116.28	1116.6	0.01	0.001	0.001	1.00E-02	1	1.00E-10
296	6 DF	134	Upper Kitimat River valley	1116.28	1116.6	0.1	0.1	0.1	1.00E-02	1	1.00E-05
49	RF	135	Upper Kitimat River valley	1116.28	1116.6	0.1	0.01	0.01	1.00E-02	1	1.00E-07
297	DF	134	Upper Kitimat River valley	1117.16	1117.28	0.1	0.01	0.1	1.00E-02	1	1.00E-06
26	AVU		Upper Kitimat River valley	1117.94	1118.36	0.1	0.01	0.001	1.00E-02	1	1.00E-08
298	B DF	134	Upper Kitimat River valley	1117.94	1118.36	0.1	0.01	0.1	1.00E-02	1	1.00E-06
299	DF	134	Upper Kitimat River valley	1119.36	1119.52	0.1	0.1	0.1	1.00E-02	1	1.00E-05
27	AVU		Upper Kitimat River valley	1119.38	1119.6	1	0.1	0.001	1.00E-02	1	1.00E-06
50	RF	135	Upper Kitimat River valley	1119.44	1120.24	0.1	0.01	0.01	1.00E-02	1	1.00E-07
300) DF	134	Upper Kitimat River valley	1120	1120.62	0.1	0.1	0.1	1.00E-02	1	1.00E-05
28	AVU		Upper Kitimat River valley	1120	1120.62	0.1	0.01	0.001	1.00E-02	1	1.00E-08
366	5 LM	136	Upper Kitimat River valley	1120.9	1121.4	0	0.001	0.001	1.00E+00	1	0.00E+00
301	. DF	134	Upper Kitimat River valley	1121.22	1121.34	0.1	0.01	0.01	1.00E-02	1	1.00E-07
29	AVU		Upper Kitimat River valley	1121.22	1121.34	0.1	0.001	0.001	1.00E-02	1	1.00E-09
302	DF	134	Upper Kitimat River valley	1121.94	1122.1	0.1	0.01	0.1	1.00E-02	1	1.00E-06
30	AVU		Upper Kitimat River valley	1121.94	1122.1	1	0.1	0.001	1.00E-02	1	1.00E-06
51	RF	135	Upper Kitimat River valley	1126.12	1128.26	1	0.01	0.01	1.00E-02	1	1.00E-06
31	AVU		Upper Kitimat River valley	1127.48	1127.82	0.1	0.01	0.001	1.00E-02	1	1.00E-08
303	DF		Upper Kitimat River valley	1127.48	1127.82	0.1	0.01	0.01	1.00E-02	1	1.00E-07
489	SC	137	Chist Creek	1128.26	1128.6	1	0.01	0.001	1.00E-03	1	1.00E-08
367	' LM	137	Chist Creek	1128.26	1128.6	1	0.1	0.01	1.00E-02	1	1.00E-05
514	SC		Cecil Creek	1136.68	1136.74	1	0.01	0.001	1.00E-03	1	1.00E-08
415	SM	143	Eastern flank on Iron Mountain	1140.62	1149.52	0.1	0.0004	0.1	1.00E+00	1	4.00E-06
429	LS	142	Eastern flank on Iron Mountain	1140.62	1149.52	0	0	0	1.00E+00	1	0.00E+00
416	SM	139	Eastern flank on Iron Mountain	1141	1142.6	0	0	0	1.00E+00	1	0.00E+00
52	RF	141	Eastern flank on Iron Mountain	1142.4	1142.52	1	0.1	0.1	1.00E-03	1	1.00E-05
53	RF	144	Southeast flank of Iron Mountain	1148.6	1148.7	1	0.1	0.1	1.00E-03	1	1.00E-05
417	' SM	146	North of Wedeene River	1148.7	1149.1	0.1	0.01	0.01	1.00E+00	1	1.00E-05
72	DS	145	North of Wedeene River	1149	1149.7	0	0	0	1.00E+00	1	0.00E+00
430) LS	147	Wedeene River area	1149.52	1152.32	0.1	0.0004	1	1.00E-02	1	4.00E-07
490	SC		Wedeene River	1150.08	1150.14	1	0.01	0.1	1.00E-03	1	1.00E-06
418	SM	146	Wedeene River west valley slope	1150.18	1150.38	1	0.01	0.001	1.00E-03	1	1.00E-08

				KP (Rev V)							
ID	Category	/ Featur	e Location	Start	End	OF	EF	VF	МО	FManual	FLOC
73	DS	145	Wedeene River West Approach	1150.6	1154.5	0.01	0.001	1	1.00E+00	1	1.00E-05
431	LS	148	Little Wedeene River Area	1152.32	1155.82	0.1	0.0004	0.1	1.00E-02	1	4.00E-08
419	SM	149	Little Wedeene River Area	1152.32	1155.82	0	0	0	1.00E+00	1	0.00E+00
420	SM	150	Little Wedeene River North terrace face	1153.74	1153.86	1	0.1	0.001	1.00E-02	1	1.00E-06
368	LM	151	Little Wedeene River	1154.1	1154.86	1	0.01	0.1	1.00E-03	1	1.00E-06
491	SC	151	Little Wedeene River	1154.1	1154.86	1	0.01	0.1	1.00E-03	1	1.00E-06
432	LS	152	Kitimat Area	1155.82	1177.62	0.1	0.0004	1	1.00E-02	1	4.00E-07
421	SM	153	Kitimat Area	1155.82	1177.62	0	0	0	1.00E+00	1	0.00E+00
369	LM	154	West of Kitimat River	1158.8	1160	0.1	0.01	0.1	1.00E-02	100	1.00E-06
370	LM	155	Kitimat River near gravel pit	1164	1164.64	1	0.01	0.1	1.00E-02	100	1.00E-05
371	LM	156	Anderson Creek	1169.1	1169.26	0.1	0.01	0.001	1.00E+00	1	1.00E-06
492	SC	156	Anderson Creek	1169.1	1169.26	1	0.01	0.001	1.00E-03	1	1.00E-08
304	DF	159	Moore Creek	1170.38	1170.5	0.1	0.01	0	1.00E-03	1	0.00E+00
54	RF		Moore Creek	1170.38	1170.5	0.1	0.01	0	1.00E+00	1	0.00E+00
55	RF	161	West side of Kitimat Arm	1171.92	1173.64	1	0.1	0.1	1.00E-04	1	1.00E-06
422	SM	160	West side of Kitimat Arm	1172.52	1176.72	1	1	0.001	1.00E-03	1	1.00E-06
372	LM	163	West side of Kitimat Arm	1174.48	1174.66	0.01	0.001	0.001	1.00E+00	1	1.00E-08
305	DF	162	West side of Kitimat Arm	1174.48	1174.66	0.1	0.01	0.01	1.00E-02	1	1.00E-07
57	RF	161	West side of Kitimat Arm	1175.4	1175.8	0	0	0	1.00E+00	1	0.00E+00
493	SC	163	West side of Kitimat Arm	1175.48	1174.66	1	0.01	0.001	1.00E-03	1	1.00E-08
56	RF	161	West side of Kitimat Arm	1175.76	1177.3	0.01	0.001	0.01	1.00E+00	1	1.00E-07
74	DS	166	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00
433	LS	167	Kitimat Terminal	1177.6	1177.6	0.01	0.0004	1	1.00E-02	1	4.00E-08
423	SM	165	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00
58	RF	170	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00
306	DF	169	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00

				KP (Re	ev V)						
ID	Category	Feature	e Location	Start	End	OF	EF	VF	MO	FManual	FLOC
226	AVA		Pass through Rockies	614	614.2	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
227	AVA		Pass through Rockies	615	615.2	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
228	AVA	59	Pass through Rockies	618.5	618.6	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
229	AVA	59	Pass through Rockies	622.1	622.25	0.01	0.0001	0.001	1.00E+00	1	1.00E-09
230	AVA	59	Pass through Rockies	624.3	624.32	0.01	0.001	0.001	1.00E+00	1	1.00E-08
231	AVA	59	Pass through Rockies	624.48	624.54	0.01	0.001	0.001	1.00E+00	1	1.00E-08
232	AVA	59	Pass through Rockies	625.5	625.6	0.01	0.001	0.001	1.00E+00	1	1.00E-08
233	AVA	71	Valley slopes of Tributary to Missinka River	637.9	638	0	0	0	1.00E+00	1	0.00E+00
234	AVA	71	Valley slopes of Tributary to Missinka River	638.9	639.3	0.1	0.001	0.001	1.00E+00	1	1.00E-07
235	AVA		Clore Tunnel - East Portal	1077.95	1078.55	0.01	0.001	0.1	1.00E+00	1	1.00E-06
236	AVA	117	Clore Tunnel - West Portal	1083.78	1084.6	0.01	0.001	0.001	1.00E+00	1	1.00E-08
237	AVA	117	Hoult Tunnel - East Portal	1084.95	1085.3	0	0.001	0.001	1.00E+00	1	0.00E+00
238	AVA	119	Hoult Tunnel - West Portal	1090.08	1091.3	0.01	0.001	0.001	1.00E+00	1	1.00E-08
240	AVA	125	Hoult Creek Valley	1094.48	1095.1	1	0.01	0.001	1.00E-02	1	1.00E-07
241	AVA	125	Hoult Creek Valley	1095.1	1095.38	0.1	0.01	0.001	1.00E-02	1	1.00E-08
242	AVA	125	Hoult Creek Valley	1095.82	1096.84	0.1	0.01	0.001	1.00E-02	1	1.00E-08
243	AVA	125	Hoult Creek Valley	1097.48	1098.04	1	0.01	0.001	1.00E-03	1	1.00E-08
244	AVA	132	Upper Kitimat River valley	1116.28	1116.6	0.01	0.001	0.001	1.00E-02	1	1.00E-10

ID	Category	Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
4	AVU	49	Quintette Creek	577.3	577.46	1	0.1	0.001	1.00E-02	1	1.00E-06
5	AVU	52	Five Cabin Creek	582.16	583.1	1	0.1	0.01	1.00E-02	1	1.00E-05
497	7 AVU		Tributary to Kinuseo	588.86	589.6	1	0.1	0.001	1.00E-02	1	1.00E-06
6	AVU		Pass through Rockies	617.7	618.52	0.1	0.01	0.001	1.00E+00	1	1.00E-06
7	AVU	68	Tributary to Missinka River	638.48	638.64	0.1	0.01	0.001	1.00E-02	1	1.00E-08
498	3 AVU		Tributary to Missinka River	652.1	652.56	1	0.1	0.001	1.00E-02	1	1.00E-06
8	AVU	82	Tributary to Chuchinka Creek	692.06	692.64	0.1	0.01	0.001	1.00E+00	1	1.00E-06
9	AVU	105	Crystal Creek	1049	1049.36	1	0.1	0.01	1.00E-03	1	1.00E-06
10	AVU		Tributary to Gosnell Creek	1061.82	1062	0.01	0.001	0.001	1.00E+00	1	1.00E-08
11	AVU	109	Tributary to Burnie River Fan	1071.06	1072.06	1	0.01	0.001	1.00E-02	1	1.00E-07
12	AVU		Hoult Creek Valley	1094.48	1095.1	1	0.1	0.001	1.00E-02	1	1.00E-06
503	B AVU		Hoult Creek Valley	1095.1	1095.38	1	0.1	0.001	1.00E-02	1	1.00E-06
13	AVU		Hoult Creek Valley	1095.38	1095.78	1	0.1	0.001	1.00E-02	1	1.00E-06
14	AVU		Hoult Creek Valley	1095.82	1096.84	1	0.1	0.001	1.00E-02	1	1.00E-06
504	AVU		Hoult Creek Valley	1096.84	1097.06	1	0.1	0.001	1.00E-02	1	1.00E-06
505	5 AVU		Hoult Creek Valley	1097.06	1097.2	1	0.1	0.001	1.00E-02	1	1.00E-06
508	3 AVU		Hoult Creek Valley	1097.22	1097.38	1	0.1	0.001	1.00E-02	1	1.00E-06
510) AVU		Hoult Creek Valley	1097.38	1097.48	1	0.1	0.001	1.00E-02	1	1.00E-06
15	AVU		Hoult Creek Valley	1097.48	1098.04	1	0.1	0.001	1.00E-03	1	1.00E-07
16	AVU		Hoult Creek Valley	1099.06	1099.28	0.01	0.01	0.001	1.00E+00	1	1.00E-07
17	AVU	126	Hunter Creek	1103.86	1104.22	1	0.1	0.1	1.00E-04	1	1.00E-06
18	AVU	129	Upper Kitimat River valley	1106.96	1107.42	0.1	0.01	0.001	1.00E-02	1	1.00E-08
19	AVU	129	Upper Kitimat River valley	1107.52	1107.8	0.1	0.01	0.001	1.00E-02	1	1.00E-08
20	AVU		Upper Kitimat River valley	1110.36	1110.44	1	0.1	0.001	1.00E-02	1	1.00E-06
21	AVU		Upper Kitimat River valley	1113.38	1113.4	0.01	0.01	0.001	1.00E-02	1	1.00E-09
22	AVU		Upper Kitimat River valley	1114.04	1114.12	0.1	0.01	0.001	1.00E-02	1	1.00E-08
23	AVU		Upper Kitimat River valley	1114.68	1114.74	1	0.1	0.001	1.00E-02	1	1.00E-06
24	AVU		Upper Kitimat River valley	1114.86	1114.98	0.1	0.01	0.001	1.00E-02	1	1.00E-08
25	AVU		Upper Kitimat River valley	1116.28	1116.6	0.1	0.01	0.001	1.00E-02	1	1.00E-08
26	AVU		Upper Kitimat River valley	1117.94	1118.36	0.1	0.01	0.001	1.00E-02	1	1.00E-08
27	AVU		Upper Kitimat River valley	1119.38	1119.6	1	0.1	0.001	1.00E-02	1	1.00E-06
28	AVU		Upper Kitimat River valley	1120	1120.62	0.1	0.01	0.001	1.00E-02	1	1.00E-08
29	AVU		Upper Kitimat River valley	1121.22	1121.34	0.1	0.001	0.001	1.00E-02	1	1.00E-09
30	AVU		Upper Kitimat River valley	1121.94	1122.1	1	0.1	0.001	1.00E-02	1	1.00E-06
31	AVU		Upper Kitimat River valley	1127.48	1127.82	0.1	0.01	0.001	1.00E-02	1	1.00E-08

			KP (Re	vV)						
ID	Category Feature	Location	Start	End	OF	EF	VF	мо	FManual	FLOC

ID	Category	/ Feature	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
245	DF	50	Tributary to Kinuseo Creek	579.94	580.04	0.01	0.01	0.01	1.00E-02	1	1.00E-08
246	DF		Five Cabin Creek	582.16	583.1	1	0.1	0.01	1.00E-02	1	1.00E-05
247	DF	58	Pass through Rockies	616.12	616.54	0	0.001	0.01	1.00E+00	1	0.00E+00
248	DF		Headwaters of Missinka River	629.7	629.8	0	0.001	0.01	1.00E+00	1	0.00E+00
249	DF		Headwaters of Missinka River	630.35	630.4	0	0.001	0.01	1.00E+00	1	0.00E+00
250	DF		Missinka River	632.1	632.2	0	0.001	0.01	1.00E+00	1	0.00E+00
251	DF	69	Tributary to Missinka River	633.92	633.96	0.01	0.01	0.01	1.00E-02	1	1.00E-08
252	DF	69	Tributary to Missinka River	635.06	635.12	0.1	0.01	0.01	1.00E-02	1	1.00E-07
253	DF	69	Tributary to Missinka River	637.14	637.2	0.1	0.01	0.01	1.00E-02	1	1.00E-07
254	DF	69	Tributary to Missinka River	637.3	637.3	0	0.001	0.01	1.00E+00	1	0.00E+00
255	DF	69	Tributary to Missinka River	638.48	638.64	0.1	0.01	0.01	1.00E-02	1	1.00E-07
256	DF	69	Tributary to Missinka River	638.9	638.9	0	0.001	0.01	1.00E+00	1	0.00E+00
257	DF		Tributary to Missinka River	639.58	639.6	0.01	0.01	0.01	1.00E-02	1	1.00E-08
258	DF		Tributary to Missinka River	645.94	645.96	0.01	0.01	0.01	1.00E-02	1	1.00E-08
259	DF		Tributary to Missinka River	646.7	647.24	0.01	0.01	0.01	1.00E-02	1	1.00E-08
260	DF		Tributary to Missinka River	652.1	652.56	0.1	0.01	0.01	1.00E-02	1	1.00E-07
261	DF		Tributary to Missinka River	655.1	655.22	0.1	0.01	0.01	1.00E-02	1	1.00E-07
262	DF		Tributary to Missinka River	656.26	656.36	0.1	0.01	0.01	1.00E-02	1	1.00E-07
263	DF		Tributary to Missinka River	659.66	659.76	0.1	0.01	0.01	1.00E-02	1	1.00E-08
264	DF		Tributary to Missinka River	661.36	661.46	0.1	0.01	0.01	1.00E-02	1	1.00E-07
265	DF		Tributary to Missinka River	662.02	662.26	0.1	0.01	0.01	1.00E-02	1	1.00E-07
266	DF		Tributary to Missinka River	665.22	665.3	0.1	0.01	0.01	1.00E-02	1	1.00E-07
267	DF		Tributary to Missinka River	666.46	666.54	0.1	0.01	0.01	1.00E-02	1	1.00E-07
268	DF		Tributary to Missinka River	667.82	668.58	0	0.001	0.01	1.00E+00	1	0.00E+00
269	DF	106	Crystal Creek	1049	1049.36	1	0.1	0.01	1.00E-03	1	1.00E-06
270	DF	107	Tributary to Gosnell Creek	1055.02	1055.1	0.1	0.01	0.01	1.00E-02	1	1.00E-07
271	DF	107	Tributary to Gosnell Creek	1057.34	1057.72	0.1	0.01	0.01	1.00E-02	1	1.00E-07
272	DF		Tributary to Gosnell Creek	1058.24	1058.7	0.1	0.01	0.01	1.00E-02	1	1.00E-07
273	DF		Tributary to Gosnell Creek	1059.6	1060	0.01	0.01	0.01	1.00E-02	1	1.00E-08
274	DF	110	Tributary to Burnie River Fan	1071.06	1072.06	0.1	0.01	0.01	1.00E-02	1	1.00E-07
275	DF	116	Tributary to Clore River crossing	1084.9	1084.94	0.01	0.01	0	1.00E-03	1	0.00E+00
276	DF	121	Hoult Creek	1092.02	1092.08	0.01	0.01	0	1.00E-03	1	0.00E+00
277	DF	121	Hoult Creek Valley	1093.1	1093.12	1	0.1	0.1	1.00E-04	1	1.00E-06
502	DF	121	Hoult Creek Valley	1094.08	1094.1	0.1	0.01	0.1	1.00E-02	1	1.00E-06
278	DF	121	Hoult Creek Valley	1094.48	1095.1	1	0.1	0.01	1.00E-02	1	1.00E-05

ID	Category	y Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
279	DF	121	Hoult Creek Valley	1095.1	1095.38	1	0.1	0.01	1.00E-02	1	1.00E-05
280	DF	121	Hoult Creek Valley	1095.38	1095.78	0.1	0.01	0.1	1.00E-02	1	1.00E-06
281	DF	121	Hoult Creek Valley	1095.82	1096.84	1	0.1	0.01	1.00E-02	1	1.00E-05
282	DF	121	Hoult Creek Valley	1096.84	1097.06	0.1	0.01	0.1	1.00E-02	1	1.00E-06
283	DF	121	Hoult Creek Valley	1097.06	1097.2	0.1	0.01	0.1	1.00E-02	1	1.00E-06
506	DF	121	Hoult Creek Valley	1097.22	1097.38	0.1	0.01	0.1	1.00E-02	1	1.00E-06
507	DF	121	Hoult Creek Valley	1097.38	1097.48	0.1	0.01	0.1	1.00E-02	1	1.00E-06
284	DF	121	Hoult Creek Valley	1097.48	1098.04	1	0.1	0.1	1.00E-03	1	1.00E-05
285	DF	121	Hoult Creek Valley	1099.06	1099.28	0.01	0.01	0.01	1.00E+00	1	1.00E-06
286	DF	127	Hunter Creek	1103.86	1104.22	1	0.1	0.01	1.00E-03	1	1.00E-06
287	DF	130	Upper Kitimat River valley	1106.56	1106.62	0.1	0.01	0.1	1.00E-02	1	1.00E-06
288	DF	130	Upper Kitimat River valley	1106.96	1107.42	0.1	0.1	0.01	1.00E-02	1	1.00E-06
289	DF	130	Upper Kitimat River valley	1107.52	1107.8	1	0.1	0.01	1.00E-03	1	1.00E-06
290	DF	134	Upper Kitimat River valley	1110.36	1110.44	0.1	0.1	0.01	1.00E-02	1	1.00E-06
291	DF	134	Upper Kitimat River valley	1113.38	1113.4	0.1	0.1	0.1	1.00E-02	1	1.00E-05
292	DF	134	Upper Kitimat River valley	1113.7	1113.8	0.01	0.01	0.1	1.00E-02	1	1.00E-07
293	DF	134	Upper Kitimat River valley	1114.04	1114.12	0.01	0.01	0.1	1.00E-02	1	1.00E-07
294	DF	134	Upper Kitimat River valley	1114.68	1114.74	0.1	0.01	0.1	1.00E-02	1	1.00E-06
295	DF	134	Upper Kitimat River valley	1114.86	1114.98	0.1	0.01	0.1	1.00E-02	1	1.00E-06
512	DF	134	Upper Kitimat River valley	1115.28	1115.32	0.01	0.01	0.1	1.00E-02	1	1.00E-07
513	DF	134	Upper Kitimat River valley	1115.6	1135.64	0.01	0.01	0.1	1.00E-02	1	1.00E-07
296	DF	134	Upper Kitimat River valley	1116.28	1116.6	0.1	0.1	0.1	1.00E-02	1	1.00E-05
297	DF	134	Upper Kitimat River valley	1117.16	1117.28	0.1	0.01	0.1	1.00E-02	1	1.00E-06
298	DF	134	Upper Kitimat River valley	1117.94	1118.36	0.1	0.01	0.1	1.00E-02	1	1.00E-06
299	DF	134	Upper Kitimat River valley	1119.36	1119.52	0.1	0.1	0.1	1.00E-02	1	1.00E-05
300	DF	134	Upper Kitimat River valley	1120	1120.62	0.1	0.1	0.1	1.00E-02	1	1.00E-05
301	DF	134	Upper Kitimat River valley	1121.22	1121.34	0.1	0.01	0.01	1.00E-02	1	1.00E-07
302	DF	134	Upper Kitimat River valley	1121.94	1122.1	0.1	0.01	0.1	1.00E-02	1	1.00E-06
303	DF		Upper Kitimat River valley	1127.48	1127.82	0.1	0.01	0.01	1.00E-02	1	1.00E-07
304	DF	159	Moore Creek	1170.38	1170.5	0.1	0.01	0	1.00E-03	1	0.00E+00
305	DF	162	West side of Kitimat Arm	1174.48	1174.66	0.1	0.01	0.01	1.00E-02	1	1.00E-07
306	DF	169	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00

				KP (Re	ev V)						
ID	Category	Featur	e Location	Start	End	OF	EF	VF	МО	FManual	FLOC
59	DS	5	Swan Hills southeast of Whitecourt	177.52	183.94	1	0.001	0.1	1.00E-02	1	1.00E-06
60	DS	9	North approach to Athabasca River	187	187.14	0	0	0	1.00E+00	1	0.00E+00
527	DS		East approach slope to Sakwatamau River	198.75	199.1	1	1	1	1.00E-05	1	1.00E-05
61	DS	19	East Approach to Little Smoky River	289.7	290.1	0.1	0.01	1	1.00E-03	10	1.00E-06
62	DS	21	West Approach Slope to Little Smoky River	290.6	291.1	1	0.01	1	1.00E-03	10	1.00E-05
517	DS		Deep Valley Creek West valley slopes	338.78	339.42	1	1	0.1	1.00E-04	1	1.00E-05
63	DS	28	East valley slope of Latornell River	370.94	371.28	1	1	0.1	1.00E-05	0.01	1.00E-06
495	DS	28	West valley slope of Latornell River	371.3	372	1	1	0.1	1.00E-05	0.01	1.00E-06
64	DS	30	West of Latornell River	372.1	374	0.1	0.1	1	1.00E-03	1	1.00E-05
65	DS	33	East valley slope of Smoky River	419.5	419.9	0.1	0.01	1	1.00E-03	1	1.00E-06
66	DS	35	West valley slope of Smoky River	421.7	422.28	1	1	0.1	1.00E-04	1	1.00E-05
69	DS	47	Wapiti River area	494.9	495.2	0	0	0	1.00E+00	1	0.00E+00
70	DS	94	Stuart River East valley slope	824.3	824.6	0.01	0.001	1	1.00E-03	1	1.00E-08
71	DS	94	Stuart River West valley slope	825	825.5	0.01	0.001	0.1	1.00E-01	1	1.00E-07
323	DS		West of Owen Creek	1006.7	1007.1	0	0.1	0.1	1.00E-03	1	0.00E+00
72	DS	145	North of Wedeene River	1149	1149.7	0	0	0	1.00E+00	1	0.00E+00
73	DS	145	Wedeene River West Approach	1150.6	1154.5	0.01	0.001	1	1.00E+00	1	1.00E-05
74	DS	166	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00

ID	Category	Featu	re Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	I FLOC
343	LM	38	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
326	LM		Riviere Qui Barre	62.8	62.96	1	0.01	0.001	1.00E-03	1	1.00E-08
327	LM	3	Pembina River	130.78	131.06	1	0.01	0.1	1.00E-03	1	1.00E-06
328	LM		Paddle River	137.4	137.66	1	0.01	0.001	1.00E-03	1	1.00E-08
329	LM	4	Little Paddle River	162.82	163.18	1	0.01	0.001	1.00E-03	1	1.00E-08
330	LM	7	Athabasca River	186.18	187.02	1	0.1	0.1	1.00E-03	1	1.00E-05
331	LM	10	Sakwatamau River	199.06	200.16	1	0.01	0.001	1.00E-03	1	1.00E-08
332	LM	13	Chickadee Creek	218.46	218.62	1	0.01	0.001	1.00E-03	1	1.00E-08
333	LM	14	Two Creek	241.2	242.4	1	0.01	0.001	1.00E-03	1	1.00E-08
334	LM	17	losegun River	258.2	258.48	1	0.01	0.001	1.00E-03	1	1.00E-08
335	LM	20	Little Smoky River crossing	290.02	290.56	1	0.1	0.1	1.00E-03	1	1.00E-05
336	LM	22	Waskahigan River	317.1	317.9	1	0.01	0.001	1.00E-03	1	1.00E-08
337	LM	23	Deep Valley Creek	337.9	338.36	1	0.1	0.001	1.00E-03	1	1.00E-07
338	LM	24	Tributary to Deep Valley Creek	340.06	340.222	1	0.01	0.001	1.00E-03	1	1.00E-08
339	LM	27	Simonette River	358.94	359.46	1	0.1	0.1	1.00E-03	1	1.00E-05
340	LM	29	Latornell River	371.26	371.3	1	0.01	0.001	1.00E-03	1	1.00E-08
341	LM	31	Tributary to Smoky River	395.1	395.12	1	0.01	0.001	1.00E-03	1	1.00E-08
342	LM	34	Smoky River floodplain	420.18	421.74	1	0.1	0.1	1.00E-04	10	1.00E-06
344	LM	41	Big Mountain Creek	428.92	429.28	1	0.01	0.001	1.00E-03	1	1.00E-08
345	LM	43	Bald Mountain Creek	446.64	446.72	1	0.01	0.001	1.00E-03	1	1.00E-08
346	LM		Wilson Creek	453.66	453.86	1	0.01	0.001	1.00E-03	1	1.00E-08
347	LM		South Redwillow River	534.12	534.18	0.1	0.001	0.001	1.00E-03	1	1.00E-10
348	LM	51	Kinuseo Creek near alignment	580.7	581.8	0.01	0.001	0.1	1.00E+00	1	1.00E-06
349	LM	53	Kinuseo Creek near alignment	587.74	587.74	0.1	0.01	0.1	1.00E-02	1	1.00E-06
428	LM	53	Kinuseo Creek	590.3	590.68	1	0.1	0.001	1.00E-03	1	1.00E-07
350	LM		Murray River	600.8	600.92	1	0.1	0.01	1.00E-03	0.1	1.00E-06
351	LM	57	Hook Creek	604.64	604.76	1	0.1	0.001	1.00E-03	1	1.00E-07
352	LM	77	Parsnip River	673.6	674.14	1	0.1	0.1	1.00E-03	1	1.00E-05
353	LM	82	Tributary to Chuchinka Creek near alignment	689.8	700.8	0	0	0	1.00E+00	1	0.00E+00
494	LM		Tributary to Chuchinka Creek	705.66	705.86	1	0.1	0.001	1.00E-03	1	1.00E-07
354	LM	86	Angusmac Creek	713.16	713.44	1	1	0.001	1.00E-03	1	1.00E-06
355	LM	87	Crooked River	720.88	721.36	1	0.1	0.001	1.00E-03	1	1.00E-07
356	LM	90	Muskeg River	750.8	750.9	1	0.01	0.001	1.00E-03	1	1.00E-08
357	LM	91	Salmon River	765.44	765.9	1	1	0.01	1.00E-03	1	1.00E-05

				KP (Re	KP (Rev V)							
ID	Category	/ Featur	e Location	Start	End	OF	EF	VF	МО	FManual	FLOC	
515	LM		Maxan Creek	951.2	951.58	1	0.01	0.001	1.00E-03	1	1.00E-08	
358	LM	97	Klo Creek	978.44	978.68	1	0.1	0.001	1.00E-03	1	1.00E-07	
359	LM		Buck Creek	989.78	990.16	1	0.1	0.001	1.00E-03	1	1.00E-07	
532	LM		Owen Creek	1006.7	1006.72	1	0.01	0.001	1.00E-03	1	1.00E-08	
533	LM		Fenton Creek	1012.78	1012.8	1	0.1	0.001	1.00E-03	1	1.00E-07	
539	LM		24.5 Mile Creek	1018.4	1018.42	1	0.1	0.001	1.00E-05	1	1.00E-09	
535	LM		Lamprey Creek	1024.66	1024.84	1	0.1	0.001	1.00E-03	1	1.00E-07	
360	LM	102	Cedric Creek	1028.45	1028.55	0	0	0	1.00E-03	1	0.00E+00	
544	LM		Morice River	1043.06	1043.42	1	0.01	0.1	1.00E-03	1	1.00E-06	
361	LM	108	Gosnell Creek	1063.76	1064.08	1	0.1	0.001	1.00E-03	1	1.00E-07	
526	LM		Tributary to Burnie River	1076.3	1076.56	1	0.01	0.001	1.00E-03	1	1.00E-08	
362	LM	114	Clore River	1077.4	1077.94	1	1	1	1.00E-04	100	1.00E-04	
363	LM	123	Hoult Creek	1092.02	1092.08	0.01	0.001	0.001	1.00E-03	1	1.00E-11	
366	LM	136	Upper Kitimat River valley	1120.9	1121.4	0	0.001	0.001	1.00E+00	1	0.00E+00	
367	LM	137	Chist Creek	1128.26	1128.6	1	0.1	0.01	1.00E-02	1	1.00E-05	
368	LM	151	Little Wedeene River	1154.1	1154.86	1	0.01	0.1	1.00E-03	1	1.00E-06	
369	LM	154	West of Kitimat River	1158.8	1160	0.1	0.01	0.1	1.00E-02	100	1.00E-06	
370	LM	155	Kitimat River near gravel pit	1164	1164.64	1	0.01	0.1	1.00E-02	100	1.00E-05	
371	LM	156	Anderson Creek	1169.1	1169.26	0.1	0.01	0.001	1.00E+00	1	1.00E-06	
372	LM	163	West side of Kitimat Arm	1174.48	1174.66	0.01	0.001	0.001	1.00E+00	1	1.00E-08	

KP (Rev V)											
ID	Category	Feature	e Location	Start	End	OF	EF	VF	MO	FManual	FLOC
429	LS	142	Eastern flank on Iron Mountain	1140.62	1149.52	0	0	0	1.00E+00	1	0.00E+00
430	LS	147	Wedeene River area	1149.52	1152.32	0.1	0.0004	1	1.00E-02	1	4.00E-07
431	LS	148	Little Wedeene River Area	1152.32	1155.82	0.1	0.0004	0.1	1.00E-02	1	4.00E-08
432	LS	152	Kitimat Area	1155.82	1177.62	0.1	0.0004	1	1.00E-02	1	4.00E-07
433	LS	167	Kitimat Terminal	1177.6	1177.6	0.01	0.0004	1	1.00E-02	1	4.00E-08

ID	Category	/ Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
33	RF	63	Pass through Rockies	623.55	623.7	0.1	0.1	0.01	1.00E-02	0.1	1.00E-06
34	RF	118	Clore Tunnel - West Portal	1083.78	1084.6	0.01	0.01	0.01	1.00E+00	1	1.00E-06
35	RF	118	Tributary to Clore River crossing	1084.9	1084.94	1	0.1	0	1.00E+00	1	0.00E+00
36	RF	118	Hoult Tunnel - East Portal	1085.64	1086.02	0.1	0.01	0.01	1.00E+00	1	1.00E-05
37	RF	120	Hoult Tunnel - West Portal	1090.08	1091.3	0.1	0.01	0.01	1.00E+00	1	1.00E-05
38	RF	122	Hoult Creek	1092.02	1092.08	0.001	0.001	1	1.00E+00	1	1.00E-06
39	RF	122	Hoult Creek Valley	1094.48	1095.1	1	0.01	0.01	1.00E-02	1	1.00E-06
40	RF	122	Hoult Creek Valley	1095.1	1095.38	1	0.01	0.01	1.00E-02	1	1.00E-06
41	RF	122	Hoult Creek Valley	1095.38	1095.78	1	0.01	0.01	1.00E-02	1	1.00E-06
42	RF	122	Hoult Creek Valley	1095.82	1096.84	1	0.01	0.01	1.00E-02	1	1.00E-06
43	RF	122	Hoult Creek Valley	1096.84	1097.06	1	0.01	0.01	1.00E-02	1	1.00E-06
44	RF	122	Hoult Creek Valley	1097.06	1097.2	1	0.01	0.01	1.00E-02	1	1.00E-06
509	RF	122	Hoult Creek Valley	1097.22	1097.38	1	0.01	0.01	1.00E-02	1	1.00E-06
511	L RF	122	Hoult Creek Valley	1097.38	1097.48	1	0.01	0.01	1.00E-02	1	1.00E-06
45	RF	123	Hoult Creek Valley	1097.48	1098.04	1	0.01	0.01	1.00E-03	1	1.00E-07
46	RF	124	Hoult Creek Valley	1099.06	1099.28	0.01	0.001	0.001	1.00E+00	1	1.00E-08
47	RF	135	Upper Kitimat River valley	1106.96	1107.42	0.01	0.001	0.01	1.00E-02	1	1.00E-09
48	RF	135	Upper Kitimat River valley	1114.86	1114.98	1	0.1	0.01	1.00E-02	1	1.00E-05
49	RF	135	Upper Kitimat River valley	1116.28	1116.6	0.1	0.01	0.01	1.00E-02	1	1.00E-07
50	RF	135	Upper Kitimat River valley	1119.44	1120.24	0.1	0.01	0.01	1.00E-02	1	1.00E-07
51	RF	135	Upper Kitimat River valley	1126.12	1128.26	1	0.01	0.01	1.00E-02	1	1.00E-06
52	RF	141	Eastern flank on Iron Mountain	1142.4	1142.52	1	0.1	0.1	1.00E-03	1	1.00E-05
53	RF	144	Southeast flank of Iron Mountain	1148.6	1148.7	1	0.1	0.1	1.00E-03	1	1.00E-05
54	RF		Moore Creek	1170.38	1170.5	0.1	0.01	0	1.00E+00	1	0.00E+00
55	RF	161	West side of Kitimat Arm	1171.92	1173.64	1	0.1	0.1	1.00E-04	1	1.00E-06
57	RF	161	West side of Kitimat Arm	1175.4	1175.8	0	0	0	1.00E+00	1	0.00E+00
56	RF	161	West side of Kitimat Arm	1175.76	1177.3	0.01	0.001	0.01	1.00E+00	1	1.00E-07
58	RF	170	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00

ID	Category	/ Featu	re Location	KP (Re Start	v V) End	OF	EF	VF	мо	FManua	FLOC
459	SC	38	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
434	SC		North Saskatchewan River	2.58	3	1	0.01	0.1	1.00E-03	1	1.00E-06
435	SC		Riviere Qui Barre	62.8	62.96	1	0.01	0.001	1.00E-03	1	1.00E-08
436	SC	3	Pembina River	130.78	131.06	1	0.01	0.1	1.00E-03	1	1.00E-06
437	SC		Paddle River	137.4	137.66	1	0.01	0.001	1.00E-03	1	1.00E-08
438	SC	4	Little Paddle River	162.82	163.18	1	0.01	0.001	1.00E-03	1	1.00E-08
439	SC	7	Athabasca River	186.18	187.02	1	0.01	0.1	1.00E-03	1	1.00E-06
440	SC	10	Sakwatamau River	199.06	200.16	1	0.01	0.001	1.00E-03	1	1.00E-08
441	SC	13	Chickadee Creek	218.46	218.62	1	0.01	0.001	1.00E-03	1	1.00E-08
442	SC	14	Two Creek	241.2	242.4	1	0.01	0.001	1.00E-03	1	1.00E-08
443	SC	17	losegun River	258.2	258.48	1	0.01	0.001	1.00E-03	1	1.00E-08
444	SC	20	Little Smoky River crossing	290.02	290.56	1	0.01	0.1	1.00E-03	1	1.00E-06
445	SC	22	Waskahigan River	317.1	317.9	1	0.01	0.001	1.00E-03	1	1.00E-08
446	SC		Incised creek valley draining to north	331.64	331.76	1	0.01	0.001	1.00E-03	1	1.00E-08
447	SC		Incised creek valley draining to north	334.5	334.58	1	0.01	0.001	1.00E-03	1	1.00E-08
448	SC	23	Deep Valley Creek	337.9	338.36	1	0.01	0.001	1.00E-03	1	1.00E-08
449	SC	24	Tributary to Deep Valley Creek	340.06	340.22	1	0.01	0.001	1.00E-03	1	1.00E-08
522	SC		Creek crossing west of tributary to Deep Valley Creek	341.32	341.34	1	0.01	0.001	1.00E-03	1	1.00E-08
450	SC		Tributaries to Simonette	353.56	353.58	1	0.01	0.001	1.00E-03	1	1.00E-08
451	SC		Tributaries to Simonette	354.58	354.62	1	0.01	0.001	1.00E-03	1	1.00E-08
452	SC		Tributaries to Simonette	355.18	355.22	1	0.01	0.001	1.00E-03	1	1.00E-08
453	SC		Tributaries to Simonette	356.38	356.4	1	0.01	0.001	1.00E-03	1	1.00E-08
454	SC		Tributaries to Simonette	357.26	357.32	1	0.01	0.001	1.00E-03	1	1.00E-08
455	SC	27	Simonette River	358.94	359.46	1	0.01	0.1	1.00E-03	1	1.00E-06
456	SC	29	Latornell River	371.26	371.3	1	0.01	0.001	1.00E-03	1	1.00E-08
457	SC	31	Tributary to Smoky River	395.1	395.12	1	0.01	0.001	1.00E-03	1	1.00E-08
458	SC	34	Smoky River floodplain	420.18	421.74	1	0.01	0.1	1.00E-03	1	1.00E-06
460	SC	41	Big Mountain Creek	428.92	429.28	1	0.01	0.001	1.00E-03	1	1.00E-08
461	SC	43	Bald Mountain Creek	446.64	446.72	1	0.01	0.001	1.00E-03	1	1.00E-08
462	SC		Wilson Creek	453.66	453.86	1	0.01	0.001	1.00E-03	1	1.00E-08
463	SC		Pinto Creek	474.2	474.28	1	0.01	0.001	1.00E-03	1	1.00E-08
464	SC		Wapiti River	494.94	495.6	0.1	0.01	0.1	1.00E-03	1	1.00E-07
465	SC		South Redwillow River	534.12	534.18	0.1	0.01	0.001	1.00E-03	1	1.00E-09
466	SC		Kinuseo Creek	568.2	568.26	1	0.01	0.001	1.00E-03	1	1.00E-08

ID	Category	· Feature	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
467	SC		Kinuseo Creek	590.3	590.68	1	0.01	0.001	1.00E-03	1	1.00E-08
468	S SC		Murray River	600.8	600.92	1	0.01	0.1	1.00E-03	1	1.00E-06
469	SC	57	Hook Creek	604.64	604.76	1	0.01	0.001	1.00E-03	1	1.00E-08
470	SC		Missinka River	643.38	643.46	1	0.01	0.001	1.00E-03	1	1.00E-08
471	SC		Missinka River	648.1	648.2	1	0.01	0.001	1.00E-03	1	1.00E-08
472	SC	77	Parsnip River	673.6	674.14	1	0.01	0.1	1.00E-03	1	1.00E-06
473	SC	86	Angusmac Creek	713.16	713.44	1	0.01	0.001	1.00E-03	1	1.00E-08
474	SC	87	Crooked River	720.88	721.36	1	0.01	0.001	1.00E-03	1	1.00E-08
475	SC	90	Muskeg River	750.8	750.9	1	0.01	0.001	1.00E-03	1	1.00E-08
476	5 SC	91	Salmon River	765.44	765.9	1	0.01	0.001	1.00E-03	1	1.00E-08
477	SC SC		Necoslie River	819.32	819.46	1	0.01	0.001	1.00E-03	1	1.00E-08
478	S SC		Stuart River	824.76	825.08	1	0.01	0.1	1.00E-03	1	1.00E-06
500	SC		Sutherland River	859.4	859.48	1	0.01	0.001	1.00E-03	1	1.00E-08
479	SC	97	Klo Creek	978.44	978.68	1	0.01	0.001	1.00E-03	1	1.00E-08
480	SC		Buck Creek	989.78	990.16	1	0.01	0.001	1.00E-03	1	1.00E-08
481	SC		Owen Creek	1005.2	1005.4	0	0.01	0.001	1.00E-03	1	0.00E+00
482	SC		Fenton Creek	1012.78	1012.8	1	0.01	0.001	1.00E-03	1	1.00E-08
483	SC		Lamprey Creek	1024.66	1024.84	1	0.01	0.001	1.00E-03	1	1.00E-08
485	SC	102	Cedric Creek	1028.45	1028.55	0	0	0	1.00E-03	1	0.00E+00
538	S SC		Cedric Creek	1032.72	1032.74	0.1	0.01	0.001	1.00E-03	1	1.00E-09
484	SC		Morice River	1043.06	1043.42	1	0.01	0.1	1.00E-03	1	1.00E-06
486	SC	108	Gosnell Creek	1063.76	1064.08	1	0.01	0.001	1.00E-03	1	1.00E-08
525	SC		Tributary to Burnie River	1076.3	1076.56	1	0.01	0.001	1.00E-03	1	1.00E-08
487	SC	114	Clore River	1077.4	1077.94	1	0.01	0.1	1.00E-03	1	1.00E-06
488	SC	126	Hunter Creek	1103.86	1104.22	1	0.01	0.001	1.00E-03	1	1.00E-08
489	SC	137	Chist Creek	1128.26	1128.6	1	0.01	0.001	1.00E-03	1	1.00E-08
514	SC		Cecil Creek	1136.68	1136.74	1	0.01	0.001	1.00E-03	1	1.00E-08
490	SC		Wedeene River	1150.08	1150.14	1	0.01	0.1	1.00E-03	1	1.00E-06
491	SC	151	Little Wedeene River	1154.1	1154.86	1	0.01	0.1	1.00E-03	1	1.00E-06
492	SC	156	Anderson Creek	1169.1	1169.26	1	0.01	0.001	1.00E-03	1	1.00E-08
493	SC	163	West side of Kitimat Arm	1175.48	1174.66	1	0.01	0.001	1.00E-03	1	1.00E-08

Geohazard List

ID	Category	Featur	re Location	KP (Re Start	v V) End	OF	EF	VF	МО	FManua	FLOC
383	SM	36	Gold Creek			0	0	0	1.00E+00	1	0.00E+00
373	SM	2	North Saskatchewan River west valley slope	3	4.1	0	0	0	1.00E+00	1	0.00E+00
516	SM		Paddle River East valley slope	137.18	137.48	1	0.1	0.01	1.00E-03	1	1.00E-06
530	SM		Swan Hills Area East of Whitecourt	183.5	183.8	0.1	0.01	0.01	1.00E-03	1	1.00E-08
374	SM	8	North approach to Athabasca River	187	187.14	1	1	0.001	1.00E-03	1	1.00E-06
375	SM	11	Narrow corridor near Sakwatamau River	200.16	202.26	1	0.1	0.01	1.00E-03	1	1.00E-06
376	5 SM	12	Tributary to Chickadee Creek valley slopes	215.16	215.56	0.1	0.1	0.001	1.00E-02	1	1.00E-07
528	SM		East of Two Creek	241.5	241.65	0	1	0.01	1.00E-03	1	0.00E+00
529	SM		East approach slopes of Two Creek	241.65	241.85	0	0.1	0.001	1.00E-02	1	0.00E+00
377	SM	15	East approach slope to losegun River	257.96	258.2	0.1	0.1	0.001	1.00E-02	1	1.00E-07
426	SM		West approach slope to losegun River	258.48	259.06	0.1	0.1	0.001	1.00E-03	1	1.00E-08
378	S SM		East Approach slope to Little Smoky River	289.72	290.02	0.1	0.01	0.01	1.00E-02	10000	1.00E-07
518	S SM		Tributrary to Deep Valley Creek East valley slopes	339.86	340.06	1	1	0.001	1.00E-02	1	1.00E-05
519	SM		Tributrary to Deep Valley Creek West valley slopes	340.22	340.34	1	1	0.001	1.00E-02	1	1.00E-05
520	SM		West of Tributary to Deep Valley Creek	340.34	341	0.1	1	0.01	1.00E-04	0.1	1.00E-07
521	SM		Creek crossing west of tributary to Deep Valley Creek	341	341.42	1	1	0.01	1.00E-04	0.1	1.00E-06
380	SM	32	Tributary to Smoky River valley slopes	395.02	395.22	1	0.1	0.001	1.00E-02	1	1.00E-06
381	. SM		Tributary to Smoky River valley slopes	403.58	403.96	0.01	0.01	0.001	1.00E-02	1	1.00E-09
382	SM		East valley slope of Smoky River	419.4	419.9	0.01	0.01	0.01	1.00E-02	1	1.00E-08
384	SM	39	Big Mountain Creek valley slopes	428.16	429.52	1	0.1	0.01	1.00E-02	10	1.00E-05
385	SM	42	Bald Mountain Creek west valley slopes	446.4	446.76	0.1	0.1	0.001	1.00E-03	1	1.00E-08
386	SM		Tributary to Iroquois Creek valley slopes	458.76	459	1	1	0.001	1.00E-02	1	1.00E-05
387	SM		Pinto Creek meander bend 1	470.84	471.08	1	1	0.01	1.00E-03	1	1.00E-05
424	SM		Pinto Creek meander bend 2	473	473.5	1	1	0.01	1.00E-03	1	1.00E-05
68	SM	46	Pinto Creek East valley slope	474.02	474.12	1	1	0.01	1.00E-04	0.1	1.00E-06
427	' SM		Pinto Creek West valley slope	474.34	474.44	1	1	0.01	1.00E-03	1	1.00E-05
388	SM		Ridge on West Side of Wapiti River	496.3	497	0.1	0.01	0.01	1.00E-01	100	1.00E-06
389	SM	48	Quintette Mountain area rock cuts	568.4	581.78	0.1	0.1	0.001	1.00E-01	1	1.00E-06
390	SM	54	Tributary of Murray River	598.82	598.98	1	1	0.01	1.00E-03	1	1.00E-05
392	SM	56	Hook Creek east approach slopes	604.6	604.64	1	1	0.001	1.00E-03	1	1.00E-06
545	SM		Hook Creek west approach slope	604.76	604.8	1	1	0.001	1.00E-03	1	1.00E-06

Geohazard List

ID	Category	· Featur	e Location	KP (Re Start	ev V) End	OF	EF	VF	мо	FManual	FLOC
393	SM	60	Pass through Rockies	619.2	625.7	0.1	0.1	0	1.00E+00	1	0.00E+00
394	SM	64	Headwaters of Hominka River	627.3	628.7	0.1	0.1	0	1.00E+00	1	0.00E+00
395	SM	70	Valley slopes of Tributary to Missinka River	636.7	639.3	0.1	0.1	0	1.00E+00	1	0.00E+00
396	SM	72	Missinka River valley slopes	642.68	643.7	0.1	0.1	0	1.00E+00	1	0.00E+00
397	SM	73	Missinka River area	643.7	668.7	0.1	0.1	0	1.00E+00	1	0.00E+00
398	SM	75	West of Parsnip River	673.84	675.24	0.1	0.1	0	1.00E+00	1	0.00E+00
399	SM	78	West of Wichcika Creek	682	688	0.1	0.1	0	1.00E+00	1	0.00E+00
400	SM	81	Tributary to Chuchinka Creek area	689.8	700.8	0.1	0.1	0	1.00E+00	1	0.00E+00
401	SM	84	Angusmac Creek East Valley Slope	712.66	713.16	1	0.1	0.001	1.00E-02	10	1.00E-06
499	SM	84	Angusmac Creek West Valley Slopes	713.55	713.9	1	0.1	0.001	1.00E-02	10	1.00E-06
402	SM	92	West valley slope of Salmon River	765.9	766.14	1	1	0.001	1.00E-03	1	1.00E-06
523	SM		Tributary to Beaver Lake	782.38	782.58	0.1	0.1	0.001	1.00E-03	1	1.00E-08
403	SM		Necoslie River valley slopes	818.92	819.32	1	0.1	0.01	1.00E-03	1	1.00E-06
404	SM	95	Stuart River West valley slope	825.02	825.08	1	1	0.1	1.00E-04	0.1	1.00E-05
524	SM		Sutherland River East valley slope	859.24	859.4	1	1	0.001	1.00E-03	1	1.00E-06
405	SM	98	Klo Creek East valley slopes	977.34	977.96	1	0.1	0.001	1.00E-03	1	1.00E-07
546	SM		Klo Creek east approach Lower slopes	978.3	978.44	1	0.1	0.001	1.00E-03	1	1.00E-07
501	SM	98	Klo Creek West valley slopes	978.68	978.72	1	0.1	0.001	1.00E-03	1	1.00E-07
541	SM		Owen Creek East Approach Slopes	1006.58	1006.7	1	0.01	0.001	1.00E-03	1	1.00E-08
543	SM		Owen Creek West Approach Slopes	1006.72	1006.8	0.1	0.01	0.001	1.00E-02	1	1.00E-08
534	SM		Fenton Creek East Approach Slope	1012.74	1012.78	0.1	0.01	0.001	1.00E-03	1	1.00E-09
542	SM		Fenton Creek West Approach Slope	1012.8	1012.86	0.1	0.01	0.001	1.00E-03	1	1.00E-09
540	SM		24.5 Mile Creek East approach slope	1018.36	1018.4	1	0.01	0.001	1.00E-03	1	1.00E-08
406	SM	100	Lamprey Creek East valley slopes	1021	1022	0	0	0	1.00E-03	1	0.00E+00
537	SM		Lamprey Creek East approach slope	1024.36	1024.66	1	0.01	0.001	1.00E-04	1	1.00E-09
407	SM	101	Cedric Creek valley slopes	1028.3	1029.1	0	0	0	1.00E-03	1	0.00E+00
408	SM	103	Side slopes of Morice River valley	1035.1	1038.1	0	0.1	0.01	1.00E-03	1	0.00E+00
409	SM	112	East approach slope to Burnie and Clore River valleys	1075.2	1075.65	0.1	0.01	0.01	1.00E-03	1	1.00E-08
410	SM	115	Tributary to Clore River and adjacent areas	1083.78	1084.6	1	0.1	0.001	1.00E-02	1	1.00E-06
411	SM	124	Hoult Creek and Upper Kitimat River valley	1092.12	1106.42	0.1	0.1	0.001	1.00E-02	10	1.00E-07
412	SM	128	Hunter Creek valley slopes	1099.05	1104.2	0	0	0	1.00E-03	1	0.00E+00
413	SM	131	Upper Kitimat River valley	1106.62	1124.62	0.1	0.1	0.001	1.00E-02	1	1.00E-07

Geohazard List

				KP (Re	ev V)						
ID	Category	Feature	Location	Start	End	OF	EF	VF	МО	FManual	FLOC
414	SM		North Side Kitimat River	1113.7	1113.82	1	1	0.001	1.00E-03	1	1.00E-06
415	SM	143	Eastern flank on Iron Mountain	1140.62	1149.52	0.1	0.0004	0.1	1.00E+00	1	4.00E-06
416	SM	139	Eastern flank on Iron Mountain	1141	1142.6	0	0	0	1.00E+00	1	0.00E+00
417	SM	146	North of Wedeene River	1148.7	1149.1	0.1	0.01	0.01	1.00E+00	1	1.00E-05
418	SM	146	Wedeene River west valley slope	1150.18	1150.38	1	0.01	0.001	1.00E-03	1	1.00E-08
419	SM	149	Little Wedeene River Area	1152.32	1155.82	0	0	0	1.00E+00	1	0.00E+00
420	SM	150	Little Wedeene River North terrace face	1153.74	1153.86	1	0.1	0.001	1.00E-02	1	1.00E-06
421	SM	153	Kitimat Area	1155.82	1177.62	0	0	0	1.00E+00	1	0.00E+00
422	SM	160	West side of Kitimat Arm	1172.52	1176.72	1	1	0.001	1.00E-03	1	1.00E-06
423	SM	165	Kitimat Terminal	1177.6	1177.6	0	0	0	1.00E+00	1	0.00E+00

73 Records

Geoh	azard	Detail	ID 343	Gold Cree	k	
Category	Lateral Migr	ation		KP (Rev V) Star	rt	Feature 38
Source	Geotechnica	l Report		KP (Rev V) En	d	
					Enbridge Northern (Gateway Project
Legacy	✓ Rei	route 🗌 🛛 G	oogle Earth Fil	ename		
CategoryLateral MigrationSourceGeotechnical ReportOverall Geotechnical Report on the Pipe Bruderheim, Alberta to Kitimat, BC. Mark	from a previou	s alignment. REVU do	es not cross Gold Cro	eek.		
	0	Legacy record	from a previou	s alignment. REVU do	es not cross Gold Cro	eek.
Frequency Vunerability Factor Mitigation 1	0	Legacy record	from a previou	s alignment. REVU do	es not cross Gold Cro	eek.
	1.00E+00					
Applied N	litgations					Standard Factor
	1					

Frequency Loss of Containment	0.00E+00	FLOC/m	

Geoh	azard	Detail ID	383 G o	old Creek		
Category	Slide - shallo	w/moderate deep	KP (Rev V) Start		Feature 36
Source	Overall Geot	l Report echnical Report on the F Alberta to Kitimat, BC. I	 Pipeline Route Re	(Rev V) End	ge Northern	Gateway Project
Legacy	✔ Rer	route 🗌 Google E	arth Filename			
Occurrence Factor	0	Legacy record from a p	previous alignmer	nt. REVU does not o	cross Gold Ci	reek.
Estimated Frequency	0	Legacy record from a p	previous alignmer	nt. REVU does not o	cross Gold Cı	reek.
Vunerability Factor	0	Legacy record from a p	previous alignmer	nt. REVU does not o	cross Gold Ci	reek.
Mitigation Options	1.00E+00					
Applied W	litgations					Standard Factor
Mitigation Site-specific	1					

	Frequency Loss of Containment	0.00E+00	FLOC/m	
--	-------------------------------	----------	--------	--

Geoh	azard	Detail	ID 459	Gold Creek		
		Poport		KP (Rev V) Start KP (Rev V) End		Feature 3
Category Sco Source Ge Ov Bru Legacy V Cccurrence Factor Estimated Frequency Vunerability Factor Mitigation 1. Options 1. Applied Mitgat	Overall Geot	technical Report o	on the Pipeline Route at, BC. March 2010	e Rev. R for the Enbri	dge Northern G	Gateway Project
	✓ Re	route 🗌 🛛 Go	ogle Earth Filenam	e		
	0	Legacy record fr	rom a previous align	ment. REVU does not	t cross Gold Cre	eek.
	0	Legacy record fr	rom a previous align	ment. REVU does no	t cross Gold Cre	eek.
	0	Legacy record fr	rom a previous align	ment. REVU does no	t cross Gold Cre	eek.
	1.00E+00					
	litgations					Standard Facto
Mitigation Site-specific	1					

Frequency Loss of Containment	0.00E+00	FLOC/m	

Geoh	azard	Deta	ID 434	North Saskate	chewan Riv	ver
Category	Scour			KP (Rev V) Start	2.58	Feature
Source	Assessment	based on revi	ew of avai	KP (Rev V) End	3	
Legacy	🗌 Rei	route 🗌	Google Earth Fil	ename		
Occurrence Factor	1	Unconsolida	ated river bed mat	terial expected at crossing	location.	
	0.01	Frequency c return perio	-	r events correspond to hig	n runoff events	typically 25 to 200 year
Estimated Frequency /unerability Factor	0.1	220m wide	channel.			
Vitigation Options	1.00E-03					
Applied M	itgations					Standard Facto

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	2.38E-09

0.001

Category	Slide - shalle	ow/moderat	te deep	ŀ	(P (Rev V) Start	3	Feature	2
Source	Geotechnica	al Report			KP (Rev V) End	4.1		
		technical Re , Alberta to I			Rev. R for the Er	ibridge Northern	Gateway Project	
Legacy	✓ Re	route 🗌	Google Ea	arth Filename				
Occurrence Factor	0				in up the west ap ng in gully is avoid		the river valley south o	fa
Estimated Frequency	0				in up the west ag ng in gully is avoid		the river valley south o	fa
unerability Factor	0				in up the west ap ng in gully is avoid		the river valley south o	fa
Mitigation Options	1.00E+00				in up the west ap ng in gully is avoid		the river valley south o	fa
Applied M	litgations						Standard I	Factor
Mitigation Site-specific	1							

Geohazard	Detail	ID	326
Oconatal a	Detail		520

Riviere Qui Barre

Category	Lateral Migra	ation	KP (Rev V) Start	62.8	Feature
Source	Geotechnica	l Report	KP (Rev V) End 62.96		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enb March 2010	ridge Northern	Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filename		
Occurrence Factor	1	•	old meander scars/oxbows pres ptable to migration towards rout		ng. Meander bend east of
Estimated Frequency	0.01		bows do not appear to be recent e of fresh gravel bars. Field asessi		derate to low frequency.
Vunerability Factor	0.001	10m wide channel.			
Mitigation Options	1.00E-03	Design should address	meander bend east of crossing.		

Applied Mitgations Sta	andard Facto	r
Sag bends beyond long-term hydrotechnical design limits	0.001	

Mitigation	1	
ite-specific		

FLOC/m

6.67E-11

Frequency Loss of Containment	1.00E-08

Geohazard Detail	ID 435	Riviere Qui Barre

Category	Scour		KP (Rev V) Start	62.8	Feature
Source	Geotechnica	l Report	KP (Rev V) End	62.96	
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge Northeri	n Gateway Project
Legacy	Rei	route 🗌 Google Ea	arth Filename		
Occurrence Factor	1	Unconsolidated river b	ed material expected at crossir	ng location.	
Estimated Frequency	0.01	Frequency of significan return period.	nt scour events correspond to h	igh runoff even	ts typically 25 to 200 year
Vunerability Factor	0.001	10m wide channel.			
Mitigation Options	1.00E-03				

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
ite-specific	

6.25E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geo	hazard	Detail	ID	327

Pembina River

Category	Lateral Migra	ation	KP (Rev V) Sta	rt 130.78	Feature3	
Source	Geotechnica	l Report	KP (Rev V) En	KP (Rev V) End 131.06		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the March 2010	Enbridge Norther	n Gateway Project	
Legacy	Rer	route 🗌 Google E	arth Filename			
Occurrence Factor	1	• ·	ering river with scars/oxbow 5. Tending to migrate northw	•	0	
Estimated Frequency	0.01		bows do not appear to be re e of fresh bars. Field asessme		noderate to low frequency.	
Vunerability Factor	0.1	80m wide channel.				
Mitigation Options	1.00E-03	HDD crossing propose	d.			

Applied Mitgations Sta	andard Factor	٢
Trenchless Methods enter/exit outside extents of lateral migration	0.001	

Mitigation	1	
Site-specific		

Frequency Loss of Containment	
Frequency Loss of Containment	

1.00E-06 FLOC/m

8.33E-10

Geohazard Detail	ID 436	Pembina River

Category	Scour		KP (Rev V) Star	t 130.78	Feature 3
Source	Geotechnica	l Report	KP (Rev V) End	131.06	
		echnical Report on the I Alberta to Kitimat, BC.	Pipeline Route Rev. R for the March 2010	Enbridge Northern	Gateway Project
Legacy	🗌 Rei	route 🗌 🛛 Google E	arth Filename		
Occurrence Factor	1	Unconsolidated river b	oed material expected at cros	sing location.	
Estimated Frequency	0.01	Frequency of significat return period.	nt scour events correspond to	high runoff event	s typically 25 to 200 year
Vunerability Factor	0.1	80m wide channel.			
Mitigation Options	1.00E-03	HDD crossing propose	d.		

Applied Mitgations St	andard Facto	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	8.33E-10

Geoh	azard	Detail ID	516	Paddle Rive	r East valley	slope
Category	Slide - shallo	w/moderate deep		KP (Rev V) Start	137.18	Feature
Source	Assessment I	based on review of avai		KP (Rev V) End	137.48	
Legacy	Rer	oute 🗌 Google E	arth Filename	2		
Occurrence Factor	1	Pipeline routed throug Extensive high plastic deposits are jointed an deposition.	glaciolacustrir	ne clay deposits u	nderlying approa	ch slopes. Some of these
Estimated Frequency	0.1	Level of activity is unknown of activity is unknown of a second s			•	,
Vunerability Factor	0.01	Larger scale moderate	ly deep seated	d slide.		
Mitigation Options	1.00E-03					

Applied Mitgations

Standard Factor

Monitoring of slope stability conditions		
Major slope and crest grading	0.01	

Mitigation	1	
Site-specific		

2.50E-09

Frequency Loss of Containment	1.00E-06	FLOC/m	

Geoh	azard	Deta	ail id	328	Paddle Rive	r	
Category	Lateral Migr	ation			KP (Rev V) Start	137.4	Feature
Source	Geotechnica	l Report			KP (Rev V) End	137.66	
			eport on the P Kitimat, BC. N		e Rev. R for the En	bridge Northern	Gateway Project
Legacy	Rei	route 🗌	Google Ea	arth Filename			
Occurrence Factor	1		-	old meander ream and dov		ar crossing. Pote	ential for long term
Estimated Frequency	0.01				ppear to be recer . Field asessment		oderate to low frequency.
/unerability Factor	0.001	10m wide	e channel.				
Mitigation Options	1.00E-03						

Applied Mitgations Sta	andard Factor	
Sag bends beyond long-term hydrotechnical design limits	0.001	

		_	
NA:tication	1		
Mitigation	1		
Site-specific			

6.67E-11

Frequency Loss of Containment	1.00E-08	FLOC/m

Geoh	azard Detail	ID 437	Paddle River		
Category	Scour		KP (Rev V) Start	137.4	Feature
Source	Geotechnical Report		KP (Rev V) End	137.66	
	Overall Geotechnical Report o Bruderheim, Alberta to Kitima			oridge Northern (Gateway Project

Legacy	Rer	oute	Google Earth Filename		
Occurrence Factor	1	Unconsolida	ted river bed material ex	pected at crossing location.	
Estimated Frequency	0.01	Frequency o return perio	-	correspond to high runoff events typical	lly 25 to 200 year
Vunerability Factor	0.001	10m wide ch	annel.		
Mitigation Options	1.00E-03				

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	5.00E-11

-				
Geo	hazard	Detail	ID	329

Little Paddle River

Category	Lateral Migr	ration	KP (Rev V) Start	162.82	Feature 4		
Source	Geotechnica	al Report	KP (Rev V) End				
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010					
Legacy	Re Re	route 🗹 🛛 Google Ea	arth Filename				
Occurrence	1	•	old meander scars/oxbows nea	•	0		
Factor Image and end of the start of the st		e crosses meand	der bend at KP 162.9.				
Estimated Frequency	0.01		bows do not appear to be recen of fresh bars. Field asessment r		oderate to low frequency.		
Vunerability Factor	0.001	10m wide channel.					
Mitigation Options	1.00E-03	Route crosses meander evaluated.	r bend at KP 162.9. Reroute to a	avoid this mean	der bend should be		

Applied Mitgations Sta	indard Factor
Sag bends beyond long-term hydrotechnical design limits	0.001

Mitigation	1	
Site-specific		

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

2.78E-11

<u> </u>		
Geohazard D	etail ID 4	138

Little Paddle River

6 -1	6			Second Character	162.02	Facture (
Category	Scour		KP (F	Rev V) Start	162.82	Feature4
Source	Geotechnica	l Report	КР	(Rev V) End	163.18	
		echnical Report on the Alberta to Kitimat, BC.		v. R for the Enl	oridge Northern	Gateway Project
Legacy	Rer	route 🗹 🛛 Google E	Earth Filename			
Occurrence Factor	1	Unconsolidated river	bed material expec	cted at crossin	g location.	
Estimated Frequency	0.01	Frequency of significa return period.	nt scour events co	rrespond to hi	gh runoff event	s typically 25 to 200 year
Vunerability Factor	0.001	10m wide channel.				
Mitigation Options	1.00E-03	Route crosses meando evaluated.	er bend at KP 162.9	9. Reroute to a	avoid this meand	der bend should be
Applied M	itgations					Standard Factor

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows

0.001

Mitigation	1
e-specific	T
nie-specific	

Frequency Loss of Containment	1.00E-08
Frequency Loss of Containment	1.00E-08

FLOC/m

2.78E-11

_				
Geo	hazard	Detail	ID	59

Category	Deep seated	slide	KP (Rev V) Start	177.52	Feature 5
Source	Geotechnical	l Report	KP (Rev V) End	183.94	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northeri	n Gateway Project
Legacy	Rer	route 🗌 Google E	arth Filename		
Occurrence Factor	1	Route located across a	apparent deep-seated slide.		
Estimated Frequency	0.001		tion of movement considered u e-activation due to local erosion		n overall gradient and wide
Vunerability Factor	0.1	Low angle slide (near i	residual angle).		
Mitigation Options	1.00E-02				

Applied Mitgations	Standard Factor
Surface water and/or groundwater control	0.1
Monitoring of slope stability conditions	0.1

Mitigation	1
Site-specific	

Frequency Loss of Containment 1.00E-06	FLOC/m	1.56E-10
--	--------	----------

_								_
Category	Slide - shallo	ow/moderat	e deep		KP (Rev V) S	tart 183.5		Feature
Source	Assessment	based on rev	view of avai		KP (Rev V)	End 183.8		
Legacy	Re	route 🗌	Google E	arth Filenar	ne			
Occurrence	0.1	Shallow to	moderately	deep seate	ed slide identif	ed from LiDAR i	magery approx	kimately 70 m west
Factor		the Athaba deep seate	asca that ru ed slide area	ns parallel t on the sou	o the route. N	ote that this loc alley slope. No	ation is within	a small tributary to an apparent large nce on proposed
Estimated Frequency	0.01	Active slid	e however h	as not yet r	etrogressed or	nto route.		
/unerability Factor	0.01	Direction of	of movemen	t is across p	ipeline.			
Mitigation Options	1.00E-03	Proposed	reroute to th	ne east beyo	ond retrogress	ion limits.		
Applied M	litgations							Standard Facto
								0.001

Geohazar	'd Detail	ID 330

Α	tł	าล	ba	SCa	a Ri	ver
---	----	----	----	-----	------	-----

Category	Lateral Migr	ation	KP (Rev V) Sta	art 186.18	Feature 7				
Source	Geotechnica	l Report	KP (Rev V) E	nd 187.02					
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	🗌 Rer	route 🗌 Google Ea	arth Filename						
Occurrence Factor	1	existing channels south be below lateral erosic	arrying flow south of main of n of the present main chan on and scour depths (deep of he north approach slope.	nel are likely to occu	ur. The crossing will need to				
Estimated Frequency	0.1		ng flow and there is a high	likelihood of of incr	eased flow in the future.				
Vunerability Factor	0.1	230m wide channel.							
Mitigation Options	1.00E-03	HDD crossing proposed	d.						

Applied Mitgations Sta	andard Factor	
Trenchless Methods enter/exit outside extents of lateral migration	0.001	

tigation	1	
ite-specific		

Frequency Loss of Containment	1.00E-05

FLOC/m

1.25E-08

Geohazard Detail	ID 439	Athabasca River

Category	Scour		KP (Rev V) Sta	rt 186.18	Feature 7
Source	Geotechnica	l Report	KP (Rev V) En	nd 187.02	
		echnical Report on Alberta to Kitimat	n the Pipeline Route Rev. R for the , BC. March 2010	e Enbridge Northern	a Gateway Project
Legacy	Rer	oute 🗌 🛛 Goo	ogle Earth Filename		
Occurrence Factor	1	Unconsolidated r	river bed material expected at cro	ossing location.	
Estimated Frequency	0.01	Frequency of sigr return period.	nificant scour events correspond t	to high runoff event	ts typically 25 to 200 year
Vunerability Factor	0.1	230m wide chanr	nel.		
Mitigation Options	1.00E-03	HDD crossing pro	oposed.		

Applied Mitgations St	andard Factor	•
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	1.25E-09

_				
Geo	hazard	Detail	ID	60

North approach to Athabasca River

Category	Deep seated	slide	KP (Rev V) Start	187	Feature 9
Source	Geotechnica	Report	KP (Rev V) End	187.14	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern (Gateway Project
Legacy	Rer	oute 🗌 Google Ea	orth Filename		
Occurrence Factor	0		oid deep seated slides. Deep se aditions are considered less pro		
Estimated Frequency	0	Has been routed to avo	oid deep seated slides.		
Vunerability Factor	0	Has been routed to avo	oid deep seated slides.		
Mitigation Options	1.00E+00	HDD crossing is propose	ed.		
Applied M	litgations				Standard Factor
Mitigation Site-specific	1				

 Frequency Loss of Containment
 0.00E+00
 FLOC/m
 0.00E+00

-	-			
Geo	hazard	Detail	ID	374

North approach to Athabasca River

Category	Slide - shallow/moderate deep		К	P (Rev V) Start	187	Feature		
Source	Geotechnica	l Report		KP (Rev V) End	187.14			
		echnical Report on Alberta to Kitimat,		eline Route Rev. R for the Enbridge Northern Gateway F rch 2010				
Legacy	Rer	oute 🗌 🛛 Goog	gle Earth Filename					
Occurrence Factor	1		roach slope, the rou small) and shallow s	-	ith local ground	water piping, groundw	vater	
Estimated Frequency	1	Expected to be re	latively frequent.					
Vunerability Factor	0.001	Shallow and local	slides considered v	ery unlikely to fai	l pipe.			
Mitigation Options	1.00E-03	HDD crossing prop	oosed entering belo	w north valley slo	ope.			
Applied M	itgations					Standard I	Factor	
Deep buria	below slide					0	.001	

Mitigation	1	
Site-specific		

Frequency Loss of Containment

1.00E-06 FLOC/m

2.50E-09

Geon	azard	Deta	ail id	527	Eas	st approa	ach slop	e to Sa	kwatan	nau River
Category	Deep seated	l slide			KP (I	Rev V) Start	198.75		Feat	ure
Source	Assessment	based on re	eview of avai		KP	(Rev V) End	199.1			
Legacy	Re Re	route 🗸	Google E	arth Filena	ame					
Occurrence	1									e available in
Factor		June 2012	2. Slope is 30	m high wh	ere the	route desce	nds into th	e river va	lley.	
Estimated	1	Level of a	ctivity is unk	nown, assı	umed to	be moving.				
Frequency										
/unerability	1	Slope ang	le is approxi	mately 10°	, steepe	r than resid	ual angle of	friction.		
Factor										
Mitigation Options	1.00E-05	-	slides appea ound betwee							e through ecommended.
Applied M	itgations								St	andard Factor
Reroute										0.001
Major slope	e and crest gra	ding								0.01

Mitigation 1 Site-specific			_
Site-specific	Mitigation	1	1
	Site-specific		

Frequency Loss of Containment	1.00E-05	FLOC/m	

Geohazard Detail	ID	331
------------------	----	-----

Category	Lateral Migra	ation	K	P (Rev V) Start	199.06	Feature	
category	Laterarivingi		N		155.00	reature	10
Source	Geotechnica	l Report		KP (Rev V) End	200.16		
		echnical Report on the Alberta to Kitimat, BC		Rev. R for the Enl	oridge Northern	Gateway Project	
Legacy	Rer	route 🗌 🛛 Google	Earth Filename				
Occurrence Factor	1		relocation north o	of proposed cross	sing. A cut off me	bars and evidence of a eander may form in th ature lateral erosion	
Estimated Frequency	0.01	Meander cutoffs par migration events on				requency. Smaller	
Vunerability Factor	0.001	30m wide channel.					
Mitigation Options	1.00E-03						

Applied Mitgations St	andard Factor	
Sag bends beyond long-term hydrotechnical design limits	0.001	

Mitigation 1
specific

Frequency Loss of Containment

FLOC/m 1.00E-08

3.33E-11

- •		-
Geohazar	'd Detai	ID 440

Sakwatamau River

	-					
Category	Scour		KP (Rev V) Sta	199.06	Feature	10
Source	Geotechnica	al Report	KP (Rev V) Er	nd 200.16		
			on the Pipeline Route Rev. R for the at, BC. March 2010	e Enbridge Northern G	ateway Project	
Legacy	E Re	route 🗌 🛛 Go	oogle Earth Filename			
Occurrence 1 Unconsolidated river bed material expected at crossing location. Factor						
Estimated Frequency	0.01	Frequency of sig return period.	gnificant scour events correspond	to high runoff events t	cypically 25 to 200 y	ear
Vunerability Factor	0.001	30m wide chanr	nel.			
Mitigation Options	1.00E-03					

Applied Mitgations St	andard Factor	
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001	

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

9.09E-12

FLOC/m

-				
Geo	hazard	Detail	ID	375

Narrow corridor near Sakwatamau River

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	200.16	Feature	11
Source	Geotechnica	l Report	KP (Rev V) End	202.26		
	Overall Geot	-	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project	
Legacy	🗌 Rei	route 🗹 Google Ea	arth Filename			
Occurrence 1 Factor There are a series of moderately deep slides along the Sakwatamau valley slopes immediately the northeast of the route. Route crosses headscarps of slide.						y to
Estimated Frequency	0.1	Moderate frequency o	f movement is expected.			
Vunerability Factor	0.01	Movement is across ro	ute but at crest of slide (low so	il loading).		
Mitigation Options	1.00E-03	Possible reroute across	d subject to check that Alliance s and to the west side of Allianc pendant on further checks.			ау,
Applied M	litgations				Standard	Factor
Reroute					C	0.001
Mitigation Site-specific	1					

Frequency Loss of Containment

4.76E-10

FLOC/m

_	-			
Goo	hazard	Detail		270
GEU	llazaru	Detail	עו	3/6

Tributary to Chickadee Creek valley slopes

Category	Slide - shallo	ow/moderate deep	КР (Rev V) Start	215.16	Feature	12
Source	Geotechnica	ıl Report	КР	(Rev V) End	215.56		
		technical Report on the , Alberta to Kitimat, BC.		v. R for the Enb	oridge North	nern Gateway Project	
Legacy	Rer	route 🗌 🛛 Google 🛛	Earth Filename				
Occurrence Factor	0.1	Steep, narrow gully, o criteria, no defined of		. –		potential instabilities). I	Meets
Estimated Frequency	0.1	No evidence of direct	coccurrence on ro	ute. Moderate	frequency e	expected.	
Vunerability Factor	0.001	Shallow and local slid	es considered unli	kely to fail pipe			
Mitigation Options	1.00E-02	Minor slope grading a	and drainage/grou	ndwater contro	ol recomme	nded.	

Applied Mitgations	Standard Factor
Drainage and groundwater control	0.1
Minor slope and crest grading	0.1

Mitigation	1
-	
Site-specific	

Frequency Loss of Containment	1.00E-07	FLOC/m	4.00E-10

Geoh	azard	Detail ID	332	Chickadee C	reek			
Category	Lateral Migr	ation		KP (Rev V) Start	218.46		Feature	13
Source	Geotechnica	l Report		KP (Rev V) End	218.62			
		echnical Report on the Pi Alberta to Kitimat, BC. N		te Rev. R for the En	bridge Northe	ern Gateway	Project	
Legacy	Re	route 🗌 Google Ea	rth Filenan	ne				
Occurrence Factor	1	Meandering river with t	tortuous pa	th, some meander	scars and oxb	OWS.		
Estimated Frequency	0.01	Meander scars and oxb Only minor occurrence				moderate to	low frequend	cy.
/unerability Factor	0.001	10m wide channel.						
Mitigation Options	1.00E-03							

Applied Mitgations Sta	andard Factor	ſ
Sag bends beyond long-term hydrotechnical design limits	0.001	

		_	
NA:tication	1		
Mitigation	1		
Site-specific			

Frequency Loss of Containment 1.00E-08	FLOC/m
--	--------

Geohazard Detail	ID 441	Chickadee Creek

Category	Scour		KP (Rev V) Start	218.46	Feature	13
Source	Geotechnica	l Report	KP (Rev V) End	218.62		
		echnical Report on the Alberta to Kitimat, BC	e Pipeline Route Rev. R for the En 2. March 2010	bridge Norther	n Gateway Project	
Legacy	🗌 Rer	route 🗌 Google	Earth Filename			
Occurrence Factor	1	Unconsolidated river	r bed material expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of signification return period.	ant scour events correspond to h	igh runoff ever	nts typically 25 to 200) year
Vunerability Factor	0.001	10m wide channel.				
Mitigation Options	1.00E-03					

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

4.00E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	
--------------------------------------	----------	--------	--

Category	Lateral Migr	ation			KP (Rev V) Star	t 241.2	Feature	14
								-
Source	Geotechnical Report			KP (Rev V) End 242.4				
	Overall Geot Bruderheim,		-	-		Enbridge Northern	Gateway Project	
Legacy	Rei	route 🗌	Google E	arth Filena	me			
Occurrence	1	N d a su al su:						
	T		-			rs and oxbows, late	rally unstable. Prelimir	hary
Factor	1		ng river with ior to ground			rs and oxbows, late	rally unstable. Prelimir	nary
	0.01	ratings pr	ior to ground	d reconnais	sance.		erally unstable. Prelimir	
Factor		ratings pr	ior to ground	d reconnais	sance.		·	
Factor Estimated Frequency /unerability		ratings pr	ior to ground scars and ox sment requi	d reconnais	sance.		·	
Factor Estimated Frequency	0.01	ratings pr Meander Field ases	ior to ground scars and ox sment requi	d reconnais	sance.		·	
Factor Estimated Frequency Vunerability	0.01	ratings pr Meander Field ases	ior to ground scars and ox sment requi	d reconnais	sance.		·	

Applied Mitgations Sta	indard Factor	•
Sag bends beyond long-term hydrotechnical design limits	0.001	

		_				
Mitigation	1					
Cit		-				
Site-specific						

Frequency Loss of Containment	1.00E-08	FLOC/m	8.33E-12

Geohazard Detail ID 442 Two Creek							
Category	Scour			KP (Rev V) Start	241.2	Feature 14	
SourceGeotechnical ReportKP (Rev V) End242.4							
Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Bruderheim, Alberta to Kitimat, BC. March 2010					n Gateway Project		
Legacy	🗌 Rer	oute 🗌 Google Ea	arth Filenar	ne			
Occurrence Factor	1	1 Unconsolidated river bed material expected at crossing location.					
Estimated Frequency	0.01	Frequency of significan return period.	t scour eve	nts correspond to hig	sh runoff even	ts typically 25 to 200 year	
Vunerability Factor	0.001	20m wide channel.				ents typically 25 to 200 year	
Mitigation Options	1.00E-03						

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Frequency Loss of Containment	1.00E-08	FLOC/m
Frequency Loss of Containment	1.00E-08	FLOC/m

						-
Category		ow/moderate deep	-	V) Start	241.5	Feature
Source	Assessment	based on review of avai	KP (Re	v V) End	241.65	
Legacy	✓ Rei	route 🗌 Google Ear	th Filename			
Occurrence	0	Legacy record, Rev V fur	ther south. Notes b	elow pertai	n to Rev U.	
Factor		A segment of the route a depletion zone as identi			stern side of Tw	o Creek crosses a slide
Estimated Frequency	1	Level of activity is unkno	wn, assume active	movement.		
/unerability Factor	0.01	Direction of sliding is acr	oss pipe.			
Mitigation Options	1.00E-03	Requires re-route beyon	d the depletion zor	ne.		
Applied M	litgations					Standard Facto
Reroute						0.001

Frequency Loss of Containment	0.00E+00
-------------------------------	----------

FLOC/m

0.00E+00

Geon	azara	Deta		529	East approa	ch slopes of	Two Creek
Category	Slide - shallo	w/moderat	e deep	I	KP (Rev V) Start	241.65	Feature
Source	Assessment	based on re	view of avai		KP (Rev V) End	241.85	
Legacy	✓ Re	route 🗌	Google Ear	th Filename			
Occurrence Factor	0	Shallow to the crossin Shallow to whereeven	moderately d ng. Considered moderately d	eep seated I possible at eep seated nder bends e	location however slides occur locall erode lower valley	on LiDAR near bu no defined occu y on the eastern	
Estimated Frequency	0.1	No eviden	ce of active sli	ding at cros	sing location.		
Vunerability Factor	0.001	Slide direc	tion would be	parallel to p	pipe.		
Mitigation Options	1.00E-02	grading, su	urface/ground	water contr	ol and possible rip	prap	

Applied Mitgations	Standard Factor
Minor slope and crest grading	0.1
Drainage and groundwater control	0.1

 Mitigation
 1

 Site-specific

Frequency Loss of Containment 0.00E+00

• •

-

FLOC/m

0.00E+00

Geoh	Geohazard Detail ID 377 East approach slope to losegue						
Category Source	Slide - shallo			KP (Rev V) Start 257.96 KP (Rev V) End 258.2	Feature 15		
Assessment based on review of imagery and/or helicopter reconnaissance							
Legacy	Re	route 🗌	Google Earth F	Filename			
Occurrence Factor	0.1	Steep slop	es, rock underlyir	ng colluvium.			
Estimated Frequency	0.1	No eviden	ce of direct occur	rence on route. Moderate frequency exp	pected.		
Vunerability Factor	0.001	Shallow ar	nd local slides con	sidered less likely to fail pipe.			
Mitigation Options	1.00E-02	Minor slop	be grading and dra	ainage/groundwater control recomment	ded.		
Applied M					Standard Factor		
_	nd groundwat				0.1		

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-07	FLOC/m	1.82E-10

Category	Lateral Migr	ation			KP (Rev V) Start	258.2	Feature	17
Source					KP (Rev V) End	258.48		
	Assessment based on review of imagery and/or helicopter reconnaissance							
				5, ,				
Legacy	Re Re	route 🗌	Google E	arth Filenai	ne			
Occurrence	1		-	-			nel is approximately	250
Factor		m wide. T	he bottom c	of the valley	is covered with mu	skeg.		
Estimated	0.01	Glaciofluv	ial channel i	nfilled with	easily erodable fine	e grained sediments	and organics, expec	t
Frequency			high frequer					
/unerability	0.001	10m wide	channel.					
Factor								
Mitigation	1.00E-03							
Options								
Applied M	itgations						Standard	Factor
Sag bends	peyond long-t	erm hydrote	chnical desi	gn limits			0	0.001

Mitigation	1	1	
Site-specific			

2.86E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geoh	azard	Detail	ID 443	losegun Rive	er		
Category	Scour			KP (Rev V) Start	258.2	Feature	17
Source	Geotechnica	l Report		KP (Rev V) End	258.48		
		echnical Report on Alberta to Kitimat,	•	oute Rev. R for the En LO	bridge Northerr	Gateway Project	
Legacy	Rei	route 🗌 🛛 Goo	gle Earth Filen	ame			
Occurrence Factor	1	Unconsolidated r	iver bed materi	ial expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of sign return period.	nificant scour ev	vents correspond to h	igh runoff event	s typically 25 to 200 year	
/unerability Factor	0.001	10m wide channe	el.				
Mitigation Options	1.00E-03						

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.86E-11

Category	Slide - shallo	w/modera	te deep		KP (Rev V) Start	258.48	Feature
Source					KP (Rev V) End	259.06	
Source				erv and/or k	nelicopter reconnais		
	Assessment					5561100	
Legacy	Re	route 🗌	Google E	arth Filenam	ne		
Occurrence	0.1						
Factor		Possible s	hallow to mo	oderately de	ep seated slides on	West approach t	o losegun River.
Estimated	0.1						
Frequency							
Frequency unerability Factor	0.001						
unerability Factor	[]	Grading a	nd groundw	ator/surface	water control Pour	to crosses small c	liamater nineline which
unerability	0.001 1.00E-03				water control. Rout route may be requi		liameter pipeline which
unerability Factor Mitigation Options	1.00E-03						
unerability Factor Mitigation Options Applied M	1.00E-03	must be c					liameter pipeline which Standard Facto
unerability Factor Mitigation Options Applied M	1.00E-03	must be c					

FLOC/m

1.00E-08

1.72E-11

Site-specific

Frequency Loss of Containment

Geohazard Detail ID 61

East Approach to Little Smoky River

Category	Deep seated	slide	K	P (Rev V) Start	289.7	Feature	19	
Source	Geotechnica	l Report	ŀ	(P (Rev V) End	290.1			
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the Ent	oridge Northerr	n Gateway Project		
Legacy	Rer	route 🗌 Google Ea	arth Filename					
Occurrence Factor	0.1	6.1 Known deep seated sliding upstream and downstream of crossing. No slide found on ridge that forms route. Sliding might be triggered by undercutting of toe due to erosion. Credible potent for occurrence at this location.						
Estimated Frequency	0.01	Located in area with polocation. Low frequence	•	eologic units, no o	deep seated slid	de identified at crossi	ng	
Vunerability Factor	1	Slopes steeper than an	gle of residual	friction.				
Mitigation Options	1.00E-03	Monitoring of stability Ground and surface wa		l rip rap or strean	n training subje	ect to detailed studies	;. ;.	

Applied MitgationsStandard FactorMonitoring of slope stability conditions0.1River training and/or riprap0.01Surface water and/or groundwater control0.1

Mitigation	10
Site-specific	

Frequency Loss of Containment

1.00E-06

FLOC/m

1.43E-09

Geohazard I	Detail I
--------------------	----------

East Approach slope to Little Smoky River

Category	Slide - shallo	w/moderate deep	KP (Rev V)	Start 289.72	Feature		
Source	Geotechnica	l Report	KP (Rev V	End 290.02			
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for March 2010	the Enbridge North	nern Gateway Project		
Legacy	Rer	route 🗹 🛛 Google I	Earth Filename				
Occurrence Factor	0.1	approach slope. No i		tive movements or	of crossing location along east a the ground, based on LiDAR urrence at location.		
Estimated Frequency	0.01	No indication of direct occurrence on route. Expected to be moderately frequent.					
/unerability Factor	0.01	Evidence of large slide seated parallel to pipe	. .	onsidered possible	for large moderately deep		
Mitigation Options	1.00E-02	investigations and mo consideration of design during detailed design	0	ed to check movem s relative to stabilit	ent status of slopes. Further y conditions is anticipated		

Applied Mitgations	Standard Factor
Drainage and groundwater control	0.1
Surface water control	0.1
Monitoring of slope stability conditions	0.1
Reroute	0.001

Mitigation	10000	FLOC calculated based on either reroute or combination of water control and monitoring.
Site-specific	,	

Frequency Loss of Containment

1.00E-07

FLOC/m

3.33E-10

-	-			
Geo	hazard	Detail	ID	335

Little Smoky River crossing

Category	Lateral Migr	ation		КР	(Rev V) Start	290.02	Feature	20	
Source	Geotechnical Report			K	P (Rev V) End	290.56			
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	🗌 Rei	route 🗸	Google Eartl	h Filename					
Occurrence Factor	1 Meandering/anastamosing river with oxbows, active bar depostion/erosion and some subchannels.								
Estimated Frequency	0.1	erosion hat channel lat	Although the river has been reasonably stable over the last approximately 50 years, major lateral erosion has occurred in the past. Lateral erosion occurring at present. Future major changes in channel lateral erosion conditions may occur, possibly including a cut off meander downstream of the crossing. Active gravel bar erosion and deposition.						
/unerability Factor	0.1	50m wide o	channel.						
Mitigation Options	1.00E-03	Trenchless		rred to mitiga	te deep seated	d slide. Trenchles I west approach :	ss crossing should star slope.	t near	
Applied M	itgations						Standard	l Factor	
Trenchless	Methods ente	er/exit outsid	e extents of lat	eral migration	n or reroute			0.001	
Mitigation Site-specific	1								

Frequency Loss of Containment

1.00E-05

FLOC/m

1.85E-08

Geohazard	Detail
------------------	--------

Category	Scour		K	P (Rev V) Start	290.02	Feature	20		
Source	Geotechnica	l Report		KP (Rev V) End	290.56				
			n the Pipeline Route t, BC. March 2010	Rev. R for the Enl	bridge Northerr	a Gateway Project			
Legacy	Rer	route 🗹 🛛 Go	ogle Earth Filename						
Occurrence Factor									
Estimated Frequency	0.01	Frequency of sig return period.	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.						
Vunerability Factor	0.1	50m wide chanr	nel.						
Mitigation Options	1.00E-03		ing preferred to mitigoach slope extending			ss crossing should sta slope.	rt near		
Applied M	itgations					Standar	d Factor		

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel move	nent	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06

FLOC/m

1.85E-09

Geohazard	Detail	ID
-----------	--------	----

Category	Deep seated	slide	KP (Rev V) Start	290.6	Feature	21
Source	Geotechnica	l Report	KP (Rev V) End	291.1		
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the Enl March 2010	oridge Northe	ern Gateway Project	
Legacy	Rer	oute 🗌 Google E	arth Filename			
Occurrence Factor	1	Route located across k	nown deep-seated slide paralle	l to existing p	ipeline.	
Estimated Frequency	0.01	Slide not currently acti	ive, no movement apparent dur	ing aerial asse	essment.	
Vunerability Factor	1	Slope angle steeper th	an residual angle of friction.			
Mitigation Options	1.00E-03		eferred to mitigate deep seated lope extending under river and		_	't near

62

Applied MitgationsStandard FactorSurface water and/or groundwater control0.1Deep burial below slide or reroute0.001

Mitigation	10
Site-specific	

Frequency Loss of Containment	1.00E-05	FLOC/m	2.00E-08

Geohazard Detail	ID 336	Waskahigan River	
Category Lateral Migration		KP (Rev V) Start 317.1	Feature 22

category	Later an improvion		(517.1	. cuture	~~
Source	Geotechnical Report		КР	(Rev V) End	317.9		
		technical Report on the , Alberta to Kitimat, BC.		v. R for the Enbi	ridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google I	Earth Filename				
Occurrence Factor	1	Wide floodplain, later laterally mobile.	ral migration (abar	ndoned channel	s and subchanr	els), appears to be	
Estimated Frequency	0.01	Meander scars and ox Some indication of ac				derate to low frequen red.	cy.
Vunerability Factor	0.001	15 m wide channel.					
Mitigation Options	1.00E-03						

Applied Mitgations Sta	andard Factor	•
Sag bends beyond long-term hydrotechnical design limits	0.001	

Frequency Loss of Containment	1.00E-08	FLOC/m

Geohazard Detail	ID 445	Waskahigan River

•				1	([
Category	Scour			КР	(Rev V) Start	317.1	Feature	22
Source	Geotechnica	l Report		К	P (Rev V) End	317.9		
	Overall Geot Bruderheim,				ev. R for the Ent	oridge Northerr	n Gateway Project	
Legacy	Rer	oute	Google Ea	arth Filename				
Occurrence Factor	1	Unconsolid	ated river be	ed material exp	ected at crossin	g location.		
Estimated Frequency	0.01	Frequency return perio	-	t scour events o	correspond to hi	gh runoff event	ts typically 25 to 200	year
Vunerability Factor	0.001	15 m wide o	channel.					
Mitigation Options	1.00E-03							

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.00E-11

Geohazard Detail

Category	Scour		KP (Rev V) Start	331.64	Feature
Source	Geotechnical Report		KP (Rev V) End	331.76	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge Northerr	n Gateway Project
Legacy	Re Re	route 🗌 Google E	arth Filename		
Occurrence Factor	1	Unconsolidated river b	ped material expected at crossin	g location.	
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events correspond to h	igh runoff event	ts typically 25 to 200 year
Vunerability Factor	0.001	10m wide channel.			
Mitigation Options	1.00E-03		y steep gradients. Pipeline cove litions during detailed design.	er should consid	er further potential scour
Applied M	litgations				Standard Factor
Pipeline be	low maximum	predicted scour depth f	for 1:100 or 1:200 peak flows		0.001

_	-	• - ·	
Frequency		f Containment	
ricquericy	L033 0	containinent	
Frequency	Loss o	f Containment	

1.00E-08 FLOC/m

Geohazard Detail

447

Category	Scour		К	P (Rev V) Start	334.5	Feature
Source	Geotechnica	Report]	KP (Rev V) End	334.58	
		echnical Report on the P Alberta to Kitimat, BC. N	•	Rev. R for the En	bridge Northerr	n Gateway Project
Legacy	Rer	oute 🗌 🛛 Google Ea	arth Filename			
Occurrence Factor	1	Unconsolidated river b	ed material ex	pected at crossir	g location.	
Estimated Frequency	0.01	Frequency of significan return period.	t scour events	correspond to h	igh runoff event	ts typically 25 to 200 year
Vunerability Factor	0.001	10m wide channel.				
Mitigation Options	1.00E-03	Streams have relatively and downcutting condi			er should consid	er further potential scour
Applied M	itgations					Standard Factor

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows 0.001

Mitigation	1
Site-specific	

Frequency Loss of Containme	nt 1.00E-08
-----------------------------	-------------

2.00E-10

FLOC/m

		_	
Geohazard	Detail	D	337

Deep Valley Creek

Category	Lateral Migr	ation		КР	(Rev V) Start	337.9	Feature	23
Source	Geotechnical Report			к	P (Rev V) End	338.36		
		echnical Repor Alberta to Kitii			ev. R for the En	bridge North	ern Gateway Project	
Legacy	🗌 Rer	route	Google Eart	th Filename				
Occurrence Factor	1	Creek appear	rs to be eroc side of the e	ding very slight existing crossi	tly toward the v	west on the n	on and some subchan orth side and toward hannel across a low el	the east
Estimated Frequency	0.1	Active bar de	posion and	erosion.				
Vunerability Factor	0.001	25m wide cha	annel.					
Mitigation Options	1.00E-03							

Applied Mitgations	Standard Factor
Sag bends beyond long-term hydrotechnical design limits	0.001

2.50E-10

Frequency Loss of Containment	1.00E-07	FLOC/m
-------------------------------	----------	--------

Geo	hazard	Detail
-----	--------	--------

Category	Scour		KP (Rev V) Start	337.9	Feature 23		
Source	Geotechnica	l Report	KP (Rev V) End	338.36			
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010				
Legacy	Rer	route 🗌 Google Ea	rth Filename				
Occurrence Factor	1	Creek appears to be ere	ed material expected at crossir oding very slightly toward the v e existing crossings. There is a and the south.	west on the no			
Estimated Frequency	0.01	Frequency of significan return period.	t scour events correspond to h	igh runoff evei	nts typically 25 to 200 year		
Vunerability Factor	0.001	25m wide channel.					
Mitigation Options	1.00E-03						

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1

1.00E-08 FLOC/m

2.50E-11

Category	Deep seated	l slide		KP (Rev V) Start	338.78	Feature	
Source	Assessment	based on re	eview of avai	KP (Rev V) End 339.42			
Legacy	Re Re	route 🗌	Google Earth F	ilename			
ccurrence Factor	1			ddle of deep seated slide i wious meander bend und		R March 2012. Likely	
Estimated Frequency	1	Level of a	ictivity unknown, a	ssumed to be moving.			
inerability Factor	0.1	Low angle	e slide (near residu	al angle).			
Mitigation Options	1.00E-04			nchless crossing. Route sh east of the slide margins.	ould parallel exist	ting pipelines which climb	
Applied N	litgations					Standard Facto	
Applied iv	•						

|--|

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID	518	Tributrary to valley slopes		ey Creek East
Category	Slide - shallo	w/moderate deep		KP (Rev V) Start	339.86	Feature
Source	Geotechnica	l Report		KP (Rev V) End	340.06	
		echnical Report on the P Alberta to Kitimat, BC. N			bridge Northerr	n Gateway Project
Legacy	Rei	route 🗌 Google Ea	arth Filenar	ne		
Occurrence	1					tributary to Deep Valley
Factor		Creek identified on LiD but concern has been e			•	ously identified the hazard
Estimated Frequency	1	-	movement	on adjacent line sin	ice grading. Act	sidual friction of low shear tive movement is assumed. s.
Vunerability Factor	0.001	Slide direction is parall	el to pipe.			
Mitigation Options	1.00E-02	Monitoring and draina, instrumentation summ	-			-

Applied Mitgations	Standard Factor
Monitoring of slope stability conditions	0.1
Drainage and groundwater control	0.1

litigation	1	
specific		

Frequency Loss of Containment 1.00E-05 FLOC/
--

_				
Geo	hazard	Detail	ID	338

Tributary to Deep Valley Creek

Category	Lateral Migr	ation	К	P (Rev V) Start	340.06	Feature	24
Source	Geotechnica	l Report	I	<p (rev="" end<="" th="" v)=""><th>340.222</th><th></th><th></th></p>	340.222		
		echnical Report on the Alberta to Kitimat, BC.		Rev. R for the En	bridge Norther	n Gateway Project	
Legacy	Rer	route 🗌 Google	Earth Filename				
Occurrence Factor	1	Tortuous meanders a location, however, su	-			ain extent at crossing	
Estimated Frequency	0.01	Evidence of active ba	r depostion/eros	sion.			
Vunerability Factor	0.001	15m wide channel.					
Mitigation Options	1.00E-03						

Applied Mitgations St	andard Factor	
Sag bends beyond long-term hydrotechnical design limits	0.001	

litigation	1	
Site-specific		

Frequency Loss of Containment	
riequency Loss of Containment	

1.00E-08 FLOC/m

6.67E-11

Geohazard	Detail
-----------	--------

Category	Scour		KP (Rev V) Start	340.06	Feature	24
Source	Geotechnica	l Report	KP (Rev V) End	340.22		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northerr	n Gateway Project	
Legacy	Rer	route 🗌 🛛 Google I	Earth Filename			
Occurrence Factor	1	Unconsolidated river	bed material expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of significa return period.	ant scour events correspond to h	igh runoff even	ts typically 25 to 200 ye	ear
Vunerability Factor	0.001	15m wide channel.				
Mitigation Options	1.00E-03					

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

FLOC/m

Geoh	azard	Detail ID	519	Tributrary to valley slopes	•	ley Creek West
Category	Slide - shallo	w/moderate deep		KP (Rev V) Start	340.22	Feature
Source	Geotechnica	l Report		KP (Rev V) End	340.34	
		echnical Report on the P Alberta to Kitimat, BC. N			bridge Norther	n Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filenar	ne		
Occurrence Factor	1		AR March 2	2012. Geotechnical r	eport had prev	tributary to Deep Valley viously identified the hazard
Estimated Frequency	1	-	movement	on adjacent line sir	ice grading. Ac	esidual friction of low shear ctive movement is assumed. ns.
/unerability Factor	0.001	Slide direction is paralle	el to pipe.			
Mitigation Options	1.00E-02		er 2012. M	onitoring and draina	age. Recomme	program to install nd that field reconnaisance iire trenchless crossing (HDD).

Applied MitgationsStandard FactorMonitoring of slope stability conditions0.1Drainage and groundwater control0.1

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	340.34	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	341	
Legacy	✔ Re	route 🗌 🛛 Google E	arth Filename		
ccurrence Factor	0.1	immediately to the sou	oderately deep slides along the uth of the route identified from les but appears to be beyond a	LiDAR imagery N	larch 2012. Route crosses
Estimated Frequency	1	Level of activity is unki	nown, assumed to be moving. S	lope is approxim	ately 13°.
nerability Factor	0.01	Direction of movemen	t is across pipeline.		
Aitigation Options	1.00E-04	Requires reroute furth	er back from crest of valley slop	Des.	
Applied M	litgations				Standard Fac
Reroute					0.00

Frequency Loss of Containment	1.00E-07	FLOC/m	
-------------------------------	----------	--------	--

Site-specific

1.52E-10

Geoh	azard	Detail	ID 521	Creek crossing w Valley Creek	est of tributary to Deep
Category	Slide - shallo	ow/moderate de	ер	KP (Rev V) Start	341 Feature
Source	Assessment	based on review	of avai	KP (Rev V) End 34.	1.42
Legacy	🗌 Re	route 🗹 G	oogle Earth Fileı	name	
Occurrence Factor	1			des on valley slopes of creek R imagery March 2012.	crossing west of Tributary to Deep
Estimated Frequency	1	Level of activity	/ unknown, som	e post grading disturbance n	oted on adjacent pipeline RoW.
′unerability Factor	0.01	Direction of slid	ding is across pip	eline.	
Mitigation Options	1.00E-04		route approxim pilities can be gra		valley is much smaller and any
Applied M	itgations				Standard Factor
Reroute					0.001
Mitigation Site-specific	0.1	Recommend rer			alley is much smaller and any

Frequency Loss of Containm

1.00E-06

FLOC/m

2.38E-09

Geon	azard	Detail ID 522	Creek crossir Valley Creek	-	ributary to Deep
Category	Scour		KP (Rev V) Start	341.32	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	341.34	
Legacy	🗌 Re	route 🗹 Google Earth File	ename		
ccurrence Factor	1	Unconsolidated river bed mat	erial expected at crossing	g location.	
stimated Frequency	0.01	Frequency of significant scour return period.	events correspond to hi	gh runoff events	typically 25 to 200 year
nerability Factor	0.001	5 m wide channel.			

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation 1
Site-specific

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geohazard	Detail
------------------	--------

Category	Scour		KF	P (Rev V) Start	353.56	Feature
				• • _		
Source	Geotechnica	l Report	K	(Rev V) End	353.58	
		echnical Report on the		Rev. R for the Enl	bridge Northern	Gateway Project
	Bruderheim,	Alberta to Kitimat, BC.	March 2010			
			Г			
Legacy	Rer	oute 🗌 Google E	arth Filename			
Occurrence	1	Unconsolidated river b	ped material exp	pected at crossin	g location.	
Factor						
Estimated	0.01	Frequency of significat	nt scour events	correspond to hi	igh runoff event	s typically 25 to 200 year
Frequency	0.01	return period.	int scour events			
Vunerability	0.001	<10m wide channel.				
Factor						
Mitigation	1.00E-03	Tributory streams have	o rolativolu stoo	n gradiante Din	alina cayar chay	uld consider further
Mitigation Options	1.00E-03	Tributary streams have potential scour and do				na consider further
			0	0.11		
Applied M	itgations					Standard Factor

ipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001	
penne below maximum predicted scour depth for 1.200 peak nows	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Cont	ainment 1.00E-08
------------------------	------------------

FLOC/m

Geohazard	Detail	ID

Category	Scour		KP (Rev V) Start	354.58	Feature	
Source	Geotechnical	Papart	KP (Rev V) End			
Source	Geolechnical	кероп	KP (KeV V) Ehd	354.62		
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project					
	Bruderheim,	Alberta to Kitimat, BC. N	Narch 2010			
		_				
Legacy	Rer	oute 🗌 Google Ea	irth Filename			
		[
Occurrence	1	Unconsolidated river b	ed material expected at cross	sing location.		
Factor						
- ·· · ·	0.01	E (· · · · · · ·				
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.				
riequency		return periou.				
Vunerability	0.001	<10m wide channel.				
Factor	0.001					
Mitigation	1.00E-03	Tributary streams have	relatively steep gradients. P	ipeline cover shou	ld consider further	
Options		potential scour and do	wncutting conditions during o	detailed design.		
		L				
A multipad B.A					Chandend Frister	
Applied M	itgations				Standard Factor	

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows

Mitigation	1
te-specific	

Frequency Loss of Containment	1.00E-08

FLOC/m

2.00E-10

0.001

Geohazard Detail

Category	Scour		KP (Rev	v V) Start	355.18	Feature
Source	Geotechnical	Report	KP (Re	ev V) End	355.22	
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010					Gateway Project
Legacy	Rer	oute 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Unconsolidated river b	ed material expecte	d at crossin	g location.	
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.				
Vunerability Factor	0.001	<10m wide channel.				
Mitigation Options	1.00E-03	Tributary streams have potential scour and do	, , , ,			uld consider further
Applied M	itgations					Standard Factor

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows 0.001

Mitigation	1
ite-specific	

Frequency Loss of Containment	
-------------------------------	--

1.00E-08 FLOC/m

Geohazard D	Detail
-------------	--------

Catagoriu	Coour				256.20	Fasture
Category	Scour		KP (Rev V) Start 356.38			Feature
Source	Geotechnica	l Report	KP (Rev	v V) End	356.4	
		echnical Report on the Alberta to Kitimat, BC.	•	for the Enl	bridge Northe	rn Gateway Project
Legacy	Rei	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	1	Unconsolidated river	bed material expected	at crossin	g location.	
Estimated Frequency	0.01	Frequency of significa return period.	nt scour events corres	pond to hi	igh runoff eve	nts typically 25 to 200 year
Vunerability Factor	0.001	<10m wide channel.				
Mitigation Options	1.00E-03	-	e relatively steep grad owncutting conditions			
Applied M						Standard Factor
Pipeline be	low maximum	predicted scour depth	for 1:100 or 1:200 pea	k flows		0.001

/litigation	1
ite-specific	

Frequency Loss of Containment	
Frequency Loss of Containment	

1.00E-08

FLOC/m

Geohazard	Detail
-----------	--------

Category	Category Scour			P (Rev V) Start	357.26	Featur	e
Source	Geotechnica	l Report	ŀ	(P (Rev V) End	357.32		
		echnical Report on the F Alberta to Kitimat, BC. I		Rev. R for the En	bridge North	ern Gateway Projec	t
Legacy	Rer	oute 🗌 Google E	arth Filename				
Occurrence Factor	1	Unconsolidated river b	oed material ex	pected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events	correspond to h	igh runoff ev	ents typically 25 to 2	200 year
Vunerability Factor	0.001	<10m wide channel.					
Mitigation Options	1.00E-03	Tributary streams have potential scour and do					ier
Applied M	itgations					Star	ndard Factor

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001	
i penne below maximum predicted scour deptirior 11200 predictions	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID	339 S	imonette I	River		
Category	Lateral Migr	ation	KF	P (Rev V) Start	358.94	Feature	27
Source	Geotechnica	l Report	k	(P (Rev V) End	359.46		
		echnical Report on the Alberta to Kitimat, BC.	-	Rev. R for the Er	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	1	Broad floodplain with and both areas have h			oodplains extend t	to the toes of both sl	opes
Estimated Frequency	0.1	Evidence of active bar	depostion/eros	ion with recent	ly abandoned sub	channels.	
Vunerability Factor	0.1	50m wide channel.					

Options vulnerable area.	Applied Mitgat	Standard Factor
Options vulnerable area.		
Options vulnerable area.		
Options vulnerable area.		
Ontions vulnerable area	Options	
	Ontions	

Bored crossing proposed. Regardless of method used, pipeline to be below depth of scour across

Trenchless Methods enter/exit outside extents of lateral migration	0.001	

Frequency Loss of Containment	1.00E-05
-------------------------------	----------

FLOC/m 1.82E-08

Mitigation

Geohazard Detail	ID 455	Simonette River	
Category Scour		KD (Rev. V) Start 358.94	Easture 27

Category	Scour		KI	P (Rev V) Start	358.94	Feature	27
Source	Geotechnica	al Report	P	(Rev V) End	359.46		
			on the Pipeline Route F nat, BC. March 2010	Rev. R for the Enl	oridge Northe	rn Gateway Project	
Legacy	Re Re	route 🗌 🛛 🤇	Google Earth Filename				
Occurrence Factor	1	Unconsolidate	ed river bed material exp	pected at crossin	g location.		
Estimated Frequency	0.01	Frequency of return period.	-	correspond to hi	gh runoff eve	nts typically 25 to 200 year	r
Vunerability Factor	0.1	50m wide cha	nnel.				
Mitigation Options	1.00E-03	Bored crossin	g proposed.				

Applied Mitgations S	Stan	dard Factor	
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	۱t	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	4.00E-09

_				
Geo	hazard	Detail	חו	63
		Detail		05

Category	Deep seated	l slide	KP (R	Rev V) Start	370.94	Feature	28
Source	Geotechnical Report		KP (Rev V) End	371.28		
		technical Report on the I , Alberta to Kitimat, BC.		. R for the Ent	oridge Northe	ern Gateway Project	
Legacy	🗌 Rer	route 🗹 Google E	arth Filename				
Occurrence Factor	1	Known deep seated slide from deep seated slide				, ,	Updated
Estimated Frequency	1	Activity of slide has no tension cracks suggest		-	pears that a f	ormer road has been	cut by
Vunerability Factor	0.1	Low angle slide (near r	residual angle).				
Mitigation Options	1.00E-05	Recommend reroute t	o avoid slide hazar	d or trenchles	ss crossing.		

Applied Mitgations	Standard Factor
Deep burial below slide or reroute	0.001

Mitigation	0.01	Recommend reroute to avoid slide hazard or trenchless crossing.
Site-specific		

Frequency Loss o	f Containment
------------------	---------------

FLOC/m

1.00E-06

2.94E-09

Geohazard Detail ID 340 Latornell River							
Category	Lateral Migr	ration	KP (Rev V) Start	371.26	Feature	29	
Source	Geotechnica	al Report	KP (Rev V) End	371.3			
Lesser	Bruderheim	, Alberta to Kitimat, BC.		oridge Northern	Gateway Project		
Legacy			Earth Filename				
Occurrence Factor	1		eed to consider lateral erosion o at may result in significant divers				
Estimated Frequency	0.01	Meander scars and ox Field asessment requi	xbows do not appear to be recen ired.	t, suggesting mc	oderate to low frequen	cy.	
Vunerability Factor	0.001	20m wide channel.					

Mitigation Options	1.00E-03	Sag bends beyond long term hydrotechnical limits. Reroute may be required to mitigate slides on approach slopes.

Applied Mitgations S	tandard Factor
Sag bends beyond long-term hydrotechnical design limits	0.001

Mitigation	1	
Site-specific		

2.50E-10

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Geohazard Detail	ID 456	Latornell River

Category	Scour		KP (Rev V) Start	371.26	Feature	29
Source	Geotechnica	l Report	KP (Rev V) End	371.3		
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge North	ern Gateway Project	
Legacy	🗌 Rei	route 🗹 Google E	arth Filename			
Occurrence Factor	1	Unconsolidated river b	ped material expected at crossin	g location.		
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events correspond to h	igh runoff ev	ents typically 25 to 200) year
Vunerability Factor	0.001	20 m wide channel.				
Mitigation Options	1.00E-03	Pipeline below maximu approach slopes.	um predicted scour depth. Rero	ute may be r	equired to mitigate sli	des on

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Frequency Loss of Containment	1.00E-08	FLOC/m	2.50E-10

Geohazard Detail	
------------------	--

Category	Deep seated	slide		KP (Rev V) Start	371.3	Feature	28
Source	Geotechnical	Report		KP (Rev V) End	372		
		-	ort on the Pipel itimat, BC. Marc	ine Route Rev. R for the En ch 2010	bridge Norther	n Gateway Project	
Legacy	Rer	oute 🗸	Google Earth	Filename			
Occurrence Factor	1			at crossing location based ard listed in Overall Geoted		iDAR (March 2012). L	Jpdated
Estimated Frequency	1						
Vunerability Factor	0.1	Low angle s	ilide (near resid	ual angle).			
Mitigation Options	1.00E-05	Recommen	d reroute or HD	DD.			

Applied Mitgations	Standard Factor
Deep burial below slide or reroute	0.001

Mitigation	0.01	Recommend reroute or HDD.
Site-specific		

Frequency Loss of Containn	ient
----------------------------	------

1.00E-06 FLOC/m

1.43E-09

Geoh	azard	Det	ail ID 6	West of	Latornell R	liver	
Category	Deep seated	slide		KP (Rev V) St	art 372.1	Feature	30
Source	Geotechnica	l Report		KP (Rev V) E	i nd 374	ŀ	
			eport on the Pip Kitimat, BC. Ma	eline Route Rev. R for th arch 2010	e Enbridge No	rthern Gateway Project	
Legacy	Rei	route 🗸	Google Eart	h Filename			
Occurrence Factor	0.1	Route lo	cated across or o	close to apparent deep-s	eated slide.		
Estimated Frequency	0.1	Activity o	of slide unknowr	n, route may be beyond o	crest.		
/unerability Factor	1	Slopes st	eeper than angl	e of residual friction.			
Mitigation Options	1.00E-03	Subject t	o further work,	reroute is assumed, cros	sing over to th	e west side of Alliance.	
Applied M	itgations					Standard Fa	actor
Reroute						0.	001

1.11E-08

Frequency Loss of Containment	1.00E-05	FLOC/m	

Geohazard D	etail
--------------------	-------

Tributary to Smoky River valley slopes

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	395.02	Feature	32
Source	Geotechnica	Geotechnical Report KP (Rev V) End 395.22				
		echnical Report on the P , Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northe	rn Gateway Project	
Legacy	Rer	route 🗌 Google Ea	orth Filename			
Occurrence Factor	1	in the general area. Rou crossing location is favo	proposed route appeared to be ute selected to avoid slides. Re prable relative to other location r slope. Requires further invest	view of LiDAR ns along tribut	(March 2012) suggests t	that
Estimated Frequency	0.1	No confirmation of dire Requires further invest	ect occurrence on route howev igation.	er LiDAR sugge	ests sliding may be possi	ible.
Vunerability Factor	0.001	Slope height approxima	ately 18 m at 12°.			
Mitigation Options	1.00E-02	Minor slope grading an	d drainage/groundwater contr	ol.		

Applied Mitgations	Standard Factor
Minor slope and crest grading	0.1
Drainage and groundwater control	0.1

Vitigation	1	
ite-specific		

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

4.00E-09

FLOC/m

Geohazard Detail 🗉	Geo	hazard	Detail	IC
--------------------	-----	--------	--------	----

Category	Lateral Migr	ation	KP (Rev V) Start	395.1	Feature 31	
Source	Geotechnica	I Report KP (Rev V) End 395.12				
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enl March 2010	bridge Northern	n Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Meandering river with	some old meander scars/oxbov	ws present near	crossing.	
Estimated Frequency	0.01	Meander scars and ox Field asessment requir	bows do not appear tobe recent ed.	t, suggesting mc	oderate to low frequency.	
Vunerability Factor	0.001	15m wide channel.				
Mitigation Options	1.00E-03					

Applied Mitgations Sta	andard Factor	
Sag bends beyond long-term hydrotechnical design limits	0.001	

Mitigation	1	
ite-specific		

Frequency Loss of Containment	

1.00E-08 FLOC/m

-				
Geo	hazard	Detail	ID	457

Category	Scour		KP (Rev V) Start	395.1	Feature 3	1		
Source	Geotechnica	l Report	KP (Rev V) End	395.12				
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Rer	route 🗌 🛛 Google	e Earth Filename					
Occurrence Factor	1	Unconsolidated river	r bed material expected at cross	sing location.				
Estimated Frequency	0.01	Frequency of signific return period.	cant scour events correspond to	high runoff event	s typically 25 to 200 year			
Vunerability Factor	0.001	15m wide channel.						
Mitigation Options	1.00E-03							

Applied Mitgations	itandard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

FLOC/m

6.67E-11

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

D 381

Tributary to Smoky River valley slopes

2.63E-12

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	403.58	Feature			
Source	Geotechnica	l Report	KP (Rev V) End	403.96				
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rer	route 🗌 Google E	arth Filename					
Occurrence Factor	0.01 Crossing of tributary to Smoky River. Moderately steep to steep slopes into small creek. Existing pipeline crossings to west. Local areas of moderately deep slides. Rev R (same as V) moved to the east away from the existing pipeline crossing to improve stability conditions. Screening criteria partially met, but no evidence at location.							
Estimated Frequency	0.01	No indication of direct	coccurrence on route. Expected	d to be moder	rately frequent.			
Vunerability Factor	0.001							
Mitigation Options	1.00E-02	Minor slope grading a	nd drainage/groundwater cont	rol recommer	nded.			

Applied Mitgations	Standard Factor
Drainage and groundwater control	0.1
Minor slope and crest grading	0.1

Frequency Loss of Containment	1.00E-09	FLOC/m

Geohazard	Detail
-----------	--------

ID 382

Category	Slide - shallo	w/moderate deep	КІ	P (Rev V) Start	419.4	Feature
Source	Geotechnical	l Report	ŀ	(P (Rev V) End	419.9	
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the Enb	ridge Northerr	n Gateway Project
Legacy	Rer	oute 🗌 Google Ea	arth Filename			
Occurrence Factor	0.01	(possible groundwater	proposed rour blow-off failur here the slope l	te) has been eroc es, but also appea nas been undercu	led forming loc ars to be stable it by the river.	ally steep gullies and bowls Moderately deep slides Also moderately deep slides
Estimated Frequency	0.01	No indication of direct	occurrence on	route.		
Vunerability Factor	0.01	Potential for larger sca	le event increa	ses vulnerability.		
Mitigation Options	1.00E-02	Minor slope grading an	nd drainage/gro	oundwater contro	ol recommende	ed.

Standard Factor	
0.1	
0.1	

Mitigation	1
Site-specific	

1.00E-08

FLOC/m

6.67E-12

_				
Geo	hazard	Detail	חו	65
ULU	nazara		ישו	05

East valley slope of Smoky River

Category	Deep seated	d slide	k	KP (Rev V) Start 419.5			Feature 33	
Source	Geotechnica	al Report		KP (Rev V) End 419.9				
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	🗌 Re	route 🗸	Google Earth Filename	SmokyRiver2.kr	nz			
Occurrence	0.1	The prese	ent alignment down the eas	t slope of the vall	ey is setback abo	ut 50 m from a relat	ive	
Factor		the prese pipeline to slide scarp	dslide scarp that is visible o ent alignment over time. Th o the north, providing roon p. The route should paralle e route will deviate around	ere appears to be n to shift the align I the south side o	about 150 m set ment at least 50	back from the existing the existing the matrix of the matr	ng n the	
Estimated Frequency	0.01	No deep s	seated identified directly or	n route. Sandston	e layer may impro	ove stability conditio	ons.	
/unerability Factor	1	Slopes ste	eeper than angle of residua	l friction if high pl	astic clay present			
Mitigation Options	1.00E-03	providing	There appears to be about room to shift the alignmen arallel the south side of the lease.	it at least 50 m fai	ther away from t	he slide scarp. The		
Applied M	itgations					Standard	l Factor	

Frequency Loss of Containment

1.00E-06

FLOC/m

6.67E-10

Geohazard Detail	
------------------	--

ID 342

Category	Lateral Migr	ation		KP (Rev V)	Start	420.18	Feature	34
Source	Geotechnical Report			KP (Rev V) End		421.74		
Overall Geotechnical Report on the Bruderheim, Alberta to Kitimat, BC.				•	r the En	bridge Northern	Gateway Project	
Legacy	Rer	oute 🗌	Google Ear	rth Filename				
Occurrence Factor	1	constraine the crossin the past, th	d to some de g. Failure of t ne river has e	e extent both east and gree by the road bridg hese fills would allow roded laterally over ve ver) fluvial terraces at l	e appro much gr ery signif	ach fills approxin eater lateral ero icant distances b	nately 1.2 km upstrea sion than at present. both to the east and v	In west.
Estimated Frequency	0.1			Il erosion problems wi ggest high frequency.	th other	pipelines in area	a and observations of	:
Vunerability Factor	0.1	200 m wid	e channel.					
Mitigation Options	1.00E-04	HDD crossi	ng proposed.	If necessary consider	self-laur	nching riprap.		

Applied Mitgations	Standard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001
Armoured stream banks suitably designed	0.01

Mitigation	10	Reduced mitigation effectiveness due to high lateral erosion of river.
Site-specific		

Frequency Loss of Containment		Γ
--------------------------------------	--	---

1.00E-06

5.88E-10

FLOC/m

Geohazard	Detail
------------------	--------

Category	Scour		KP (Rev V) Start	420.18	Feature 34
Source	Geotechnica	l Report	KP (Rev V) End	421.74	
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge Northerr	n Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filename		
Occurrence Factor	1	Unconsolidated river b	ped material expected at crossir	g location.	
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events correspond to h	igh runoff event	ts typically 25 to 200 year
Vunerability Factor	0.1	300m wide channel.			
Mitigation Options	1.00E-03	HDD crossing proposed	d.		

Applied Mitgations S	tandard Facto	or
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001	-

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

7.14E-10

_				
Geo	hazard	Detail	ID	66

7.69E-09

Category	Deep seated	slide	KP (Rev V) Start	421.7	Feature	35
Source	Geotechnica	l Report	KP (Rev V) End	422.28		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the E . March 2010	Enbridge Nort	hern Gateway Project	
Legacy	Rer	route 🗹 Google	Earth Filename			
Occurrence Factor	1	Route located across	edge of known deep-seated sli	de. Small ten	sion cracks identified.	
Estimated Frequency	1	Active slide.				
Vunerability Factor	0.1	Low angle slide (near	residual angle of friction).			
Mitigation Options	1.00E-04	Requires reroute to r	north close to road. Monitoring	of stability c	onditions recommended	1.

Applied Mitgations Standard Factor Monitoring of slope stability conditions 0.1 Reroute 0.001

Site-specific

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Deta	JI ID	384	Big Mou	intain (Creek va	lley slope	S	
Category	Slide - shallo	ow/modera	te deep		KP (Rev V) S	tart	428.16	Fea	ature	39
Source	Reroute from	n location i	n Overall Ge		KP (Rev V)	End 4	129.52			
	Assessment	based on re	eview of image	ry and/or	helicopter rec	onnaissar	се			
Legacy	🗌 Re	route 🗸	Google Ear	th Filenar	me					
Occurrence Factor	1		te has moved in the with ground				uggest slide	s at route, fur	ther	
Estimated Frequency	0.1	Moderate	e frequency is a	assumed s	ubject to furth	ner work.				
unerability Factor	0.01	Slide mov	ement may be	across pi	peline.					
Mitigation Options	1.00E-02	Recomme	end reroute or	HDD.						
Applied M	litgations								Standard I	Facto
Reroute or	HDD								0	0.001
Mitigation Site-specific	10									

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

7.35E-09

Category	Lateral Mig	ration	KP (Rev V) Start	428.92	Feature	4
Source	Reroute from	m location in Overall Ge	KP (Rev V) End	429.28		
	Assessment	based on review of ima	gery and/or helicopter reconnais	ssance		
Legacy	Re	route 🗹 Google I	Earth Filename			
Occurrence Factor	1	Oxbows and meander	r scars near crossing indicate pre	vious lateral erosi	on.	
Estimated Frequency	0.01	Meander scars and ox asessment required.	kbows do not appear recent, sug	gesting moderate	to low frequency. Fi	eld
unerability Factor	0.001	20m wide channel.				
Mitigation Options	1.00E-03					
options						
Applied N	litgations				Standard	Facto

Frequency Loss of Containment	1.00E-08	FLOC/m	2.50E-11
-------------------------------	----------	--------	----------

Site-specific

Category	Scour			KP (Rev V) Start	428.92	Feature	42
Source	Reroute from	n location in Overal	Ge	KP (Rev V) End	429.28		
	Assessment	based on review of	imagery and/or	helicopter reconna	issance		
Legacy	Re	route 🗹 🛛 Goo	gle Earth Filenar	ne			
Occurrence Factor	1	Unconsolidated ri	ver bed materia	l expected at crossi	ng location.		
Estimated Frequency	0.01	Frequency of sign return period.	ficant scour eve	nts correspond to h	nigh runoff events	typically 25 to 200 ye	ear
Frequency	0.01			nts correspond to h	nigh runoff events	typically 25 to 200 ye	ear
Frequency unerability		return period.		nts correspond to h	nigh runoff events	typically 25 to 200 ye	ear

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.22E-11

Geon	azard	Deta	all id	385	Bald Mount	ain Creek we	est valley slopes
Category	Slide - shallo	ow/modera	te deep		KP (Rev V) Start	446.4	Feature
Source	Assessment	based on re	eview of avai		KP (Rev V) End	446.76	
Legacy	Re	route 🗌	Google Ea	arth Filenam	e		
Occurrence Factor	0.1	reconnais	sance. Low e	levation expo	•	bend with overba	de of Creek during grou ank fine grained sands
Estimated Frequency	0.1	Sliding die	d not appear	to be curren	tly active during gr	ound reconnaissa	ince.
/unerability Factor	0.001	Shallow s	liding parallel	l to pipe.			
Mitigation Options	1.00E-03	Ground a	nd surface wa	ater control.	Grading will reduc	e the potential fo	r occurrence.
Applied M	litgations						Standard Fa
Drainage ar	nd groundwat	er control					(

Drainage and groundwater control	
Surface water control	
Minor slope and crest grading	1
Minor slope and crest grading	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.78E-11

0.1 0.1

Geoh	azard	Deta	il id	345	Bald Moun	tain Creek		
Category	Lateral Migra	ation			KP (Rev V) Start	446.64	Feature	43
Source	Assessment I	based on rev	ew of avai		KP (Rev V) End	446.72		
Legacy	Rer	oute 🗌	Google E	arth Filena	me			
Occurrence Factor	1	Oxbows and	d meander	scars near	crossing indicate p	revious lateral erc	osion.	
Estimated Frequency	0.01				ot appear to be rec and minor bar dep		oderate to low freque ment required.	ncy.
/unerability Factor	0.001	20m wide c	hannel.					
Mitigation Options	1.00E-03							

Applied Mitgations

Standard Factor

0.001

Sag bends beyond long-term hydrotechnical design limits

Mitigation	1
Site-specific	
Sile-specific	

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

FLOC/m

3.33E-11

Category	Scour				KP (Rev V)) Start	446.64	Feature	۷ ک
Source	Assessment	based on reviev	v of avai		KP (Rev V	/) End	446.72		
Legacy	Re	route 🗌 🛛	Google Earth	Filenam	e				
Occurrence Factor	1	Unconsolidate	ed river bed r	material	expected at	t crossing	glocation.		
Estimated Frequency	0.01	Frequency of return period	-	our even	ts correspo	ond to hig	gh runoff even	ts typically 25 to 2	00 year
unerability Factor	0.001	20m wide cha	innel.						
Mitigation Options	1.00E-03								

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows0.001

Mitigation	1
Site-specific	1
Site-specific	

3.33E-11

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Category	Lateral Migr	ation		KP (Rev V) Start	453.66	Feature
Source	Geotechnica	l Report		KP (Rev V) End	453.86	
			on the Pipeline nat, BC. March 2	Route Rev. R for the En 010	bridge Northern (Gateway Project
Legacy	🗌 Rei	oute 🗌 🛛 🔾	Google Earth File	name		
occurrence	1					
Factor		MODIle creek	within flat valley	bottom.		
Estimated	0.01	Meander scar	s and oxbows do			derate to low frequency
Factor Estimated Frequency unerability Factor		Meander scar	s and oxbows do of active bar dep	not appear to be recer		derate to low frequency

Applied Mitgations Sta	andard Factor	
Sag bends beyond long-term hydrotechnical design limits	0.001	

Mitigation
te-specific

5.00E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

eoh	azard Detail	462 Wilson Cree	k	
Category	Scour	KP (Rev V) Start	453.66	Feature
Source	Geotechnical Report	KP (Rev V) End	453.86	
	Overall Geotechnical Report on the Bruderheim, Alberta to Kitimat, BC	•	oridge Northern (Gateway Project

Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
Vunerability Factor	0.001	15m wide channel.
Mitigation Options	1.00E-03	

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
ite-specific	

Frequency Loss of Containment 1.00E-08 FLOC/m 5.00E-11	Frequency Loss of Containment	1.00E-08	FLOC/m	5.00E-11
--	--------------------------------------	----------	--------	----------

-		_		
Geo	hazard	Detail	ID	386

Tributary to Iroquois Creek valley slopes

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start458.76Feature			
Source	Geotechnica	l Report	KP (Rev V) End 459			
		echnical Report on the Pi Alberta to Kitimat, BC. M	ipeline Route Rev. R for the Enl 1arch 2010	oridge Northerr	n Gateway Project	
Legacy	Rer	route 🗌 Google Ea	rth Filename			
Occurrence Factor	1	Shallow to moderately of	deep sliding of approach slope	s. Defined occu	rrence at location.	
Estimated Frequency	1	Expected to be relativel	ly frequent.			
Vunerability Factor	0.001					
Mitigation Options	1.00E-02	Minor slope grading and	d drainage/groundwater contro	ol recommende	ed.	

Applied Mitgations	Standard Factor
Drainage and groundwater control	0.1
Minor slope and crest grading	0.1

Mitigation	1
Site-specific	

3.33E-08

Frequency Loss of Containment	1.00E-05	FLOC/m	
-------------------------------	----------	--------	--

Category	Slide - shallo	ow/moderate deep	KP (Rev	V) Start 470.84	Feature
] -		
Source	Geotechnica	al Report	KP (Rev	v V) End 471.08	
		technical Report on the P , Alberta to Kitimat, BC. N		or the Enbridge Northerr	i Gateway Project
Legacy	Rei	route 🗹 Google Ea	rth Filename		
currence	1	Moderately deep-seate	ed slide into meander	bend of Pinto Creek close	e to south side of existing
Factor		RoW. Defined occurre	nce.		
stimated requency	1	Active movement expe	cted.		
nerability Factor	0.01	Sliding direction is acro	ss pipeline.		
litigation Options	1.00E-03	Reroute from south sid	e to north of existing	RoW.	

Frequency Loss of Containment	1.00E-05	

FLOC/m

Geoh	azard	Deta	ail id	424	Pinto Creek	meander b	end 2
Category Source	Slide - shallo Assessment		-		KP (Rev V) Start KP (Rev V) End	473 473.5	Feature
Legacy	🗌 Rei	route 🖌	Google Ea	arth Filena	me		
Occurrence Factor	1	Route loca	ated across m	noderately	deep-seated slide d	efined on the ba	sis of LiDAR.
Estimated Frequency	1	Active slid	е.				
Vunerability Factor	0.01	Sliding dire	ection is acro	oss pipeline	2.		
Mitigation Options	1.00E-03	Recomme	nd reroute to	o North sic	le of existing RoW of	r HDD.	
Applied M Reroute or	-						Standard Factor
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-05	FLOC/m	2.00E-08

Category	Slide - shallo	w/moderat	e deep	K	P (Rev V) Start	474.02	Feature	46
Source	Geotechnica	l Report			KP (Rev V) End	474.12		
			oort on the P Kitimat, BC. N		Rev. R for the E	nbridge Northern	Gateway Project	
Legacy	Rei	route 🗸	Google Ea	rth Filename				
Occurrence Factor	1	Route loca	ited across kr	nown modera	ely deep-seate	d slide.		
Estimated Frequency	1	Active slid	е.					
unerability Factor	0.01	Potential f	or larger scal	e event increa	ises vulnerabilit	у.		
Mitigation Options	1.00E-04					-	less crossing. Possi d perform extensiv	
Applied M	litgations						Standa	ard Facto
Reroute or	HDD							0.001

Frequency Loss of Containment	
ricquency coss of containinent	

1.00E-06 FLOC/m

1.00E-08

Geoh	azard	Detail ID 463 Pinto Creek
Category	Scour	KP (Rev V) Start474.2Feature
Source	Assessment	t based on review of avaiKP (Rev V) End474.28
Legacy	Re	eroute 🗹 Google Earth Filename
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
unerability Factor	0.001	25m wide channel.
Mitigation Options	1.00E-03	Requires further investigation for trenchless crossing to mitigate scour potential. Recommend HDD or reroute.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

1.25E-10

Frequency Loss of Containment1.00E-08FLOC/m

	uzuru	Deta	II ID	427	Pinto Creel	< West valley	/ slope	
Category	Slide - shallo	w/moderate	e deep		KP (Rev V) Start	474.34	Featur	e
Source	Geotechnica	Report			KP (Rev V) End	474.44		
	Overall Geot Bruderheim,				e Rev. R for the E	nbridge Northern	Gateway Projec	t
Legacy	Rer	oute 🗸	Google E	arth Filenam	e			
Occurrence Factor	1	Route locat	ed across k	nown model	ately deep-seate	d slide.		
Estimated Frequency	1	Active slide						
unerability Factor	0.01	Potential fo	or larger sca	le event incr	eases vulnerabilit	ty.		
Mitigation Options	1.00E-03					tigation for trench existing pipeline ar	-	
	gations						Star	ndard Facto
Applied Mit								

Frequency Loss of Containment

1.00E-07

FLOC/m

Geoh	azard	Deta	il id (69 Wapiti Rive	er area	
Category	Deep seated	d slide		KP (Rev V) Start	494.9	Feature 47
Source	Geotechnica			KP (Rev V) End	495.2	
			port on the Pip Kitimat, BC. Ma	peline Route Rev. R for the E arch 2010	nbridge Northern	Gateway Project
Legacy	✓ Re	route 🗌	Google Ear	th Filename		
Occurrence Factor	0	Has been i	routed to avoid	d deep seated slides.		
Estimated Frequency	0	Has been r	routed to avoid	d deep seated slides.		
/unerability Factor	0	Has been r	routed to avoid	d deep seated slides.		
Mitigation Options	1.00E+00	Has been r	routed to avoid	d deep seated slides.		
Applied M	itgations					Standard Factor
Mitigation Site-specific	1					

Frequency Loss of Containment	0.00E+00	FLOC/m
-------------------------------	----------	--------

0.00E+00

Geoh	azard	Detail ID 464 Wapiti River
Category	Scour	KP (Rev V) Start 494.94 Feature
		based on review of avai KP (Rev V) End 495.6
Legacy Occurrence Factor	0.1	Google Earth Filename Bedrock river bed material expected at crossing location may reduce potential for scour.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
/unerability	0.1	110m wide channel.
Factor Mitigation	1.00E-03	HDD crossing proposed.
Options	2.002.03	

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

1.52E-10

Frequency Loss of Containment	1.00E-07	FLOC/m

Geohazard I	Detail
-------------	--------

ID 388

Ridge on West Side of Wapiti River

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	496.3	Feature
Source	Geotechnical Report		KP (Rev V) End	497	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Er Aarch 2010	nbridge Northe	ern Gateway Project
Legacy	Rer	route 🗌 Google Ea	urth Filename		
Occurrence Factor	0.1	ridge, apparent shallow colluvium. On north sid	deep slides on ridge located o v slides in rock exposed on ste de of ridge, apparent moderat reliminary field and office revits.	ep slopes dow ely deep-seate	n to Wapiti River and ed slide in valley fill
Estimated Frequency	0.01	No indication of direct	occurrence on route. Moveme	ents expected	to be moderately active.
Vunerability Factor	0.01	Route runs perpendicu	lar to direction of expected sli	ding along the	margins of meander bends.
Mitigation Options	1.00E-01	•	easures if there is an issue incluent of major problems), conside		Ū.

0.1
0.1
0.1
-

Frequency Loss of Containment

1.00E-06

1.67E-09

FLOC/m

Geohazard	Detail
-----------	--------

ID 347

Category	Lateral Migration		KP (Rev V) Start	534.12	Feature
Source	Geotechnica	l Report	KP (Rev V) End	534.18	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the I March 2010	Enbridge Northern	Gateway Project
Legacy	Rer	route 🗌 Google E	arth Filename		
Occurrence Factor	0.1	also occur on west side meltwater channel. Ch	channel upstream, meander of e but not seen. Narrow valley annel does not show evidenc edrock?). Further investigatio	i, the river is misfit of previous later	in an old glaciofluvial al erosion at crossing
Estimated Frequency	0.001	Possible lateral confine further investigation.	ement in bedrock, frequency	of lateral migratior	n considered low. Requires
Vunerability Factor	0.001	20 m wide channel.			
Mitigation Options	1.00E-03	May require reroute n	orth to avoid in-stream blasti	ng.	

Applied Mitgations	Standard Factor
Sag bends beyond long-term hydrotechnical design limits	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	
-------------------------------	--

1.67E-12

Geohazard D	etail
--------------------	-------

Category	Scour		KP (Rev V) Start	534.12	Feature
Source	Geotechnica	l Report	KP (Rev V) End	534.18	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the Enl March 2010	oridge Northern	Gateway Project
Legacy	🗌 Rer	route 🗌 Google E	arth Filename		
Occurrence Factor	0.1	Unconsolidated or bed	drock river bed material expecte	d at crossing loc	cation.
Estimated Frequency	0.01	Frequency of signification return period.	nt scour events correspond to hi	gh runoff events	s typically 25 to 200 year
Vunerability Factor	0.001	20 m wide channel.			
Mitigation Options	1.00E-03				

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-09
-------------------------------	----------

FLOC/m

1.67E-11

	Scour		KP (Rev V) Start	568.2	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	568.26	
Legacy	Re Re	route 🗌 Google Earth	Filename		
currence Factor	1	Unconsolidated river bed n	naterial expected at crossin	g location.	
timated equency	0.01	Frequency of significant sco return period.	our events correspond to hi	igh runoff events	typically 25 to 200 y
erability Factor	0.001	15m wide channel.			
	1.00E-03				

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation 1
Site-specific

Frequency Loss of Containment	1.00E-08	FLOC/m	1.00E-10

Geo	hazard	Detail	ID	389

Quintette Mountain area rock cuts

7.46E-11

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	568.4	Feature	48
Source	Geotechnica	l Report	KP (Rev V) End	581.78		
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the Enl March 2010	oridge Northe	rn Gateway Project	
Legacy	🗌 Rer	route 🗌 Google E	arth Filename			
Occurrence Factor	0.1		uts in the ends of ridges striking veneers or bedrock slides). Consi			
Estimated Frequency	0.1		d possible upon excavation of cu . Frequency difficult to assess ov			ative to
Vunerability Factor	0.001	Small slides unlikely to	affect buried pipe.			
Mitigation Options	1.00E-01	Suitable design for roc	k cuts includes grading and pos	sible anchorin	g.	

Applied Mitgations	Standard Factor
Minor slope and crest grading	0.1

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geohazard Detail	ID 4	Quintette Creek

Category	Avulsion		К	P (Rev V) Start	577.3	Feature	49
Source	Geotechnica	l Report		KP (Rev V) End	577.46		
		echnical Report on t Alberta to Kitimat,		Rev. R for the Enl	bridge Northern	Gateway Project	
Legacy	🗌 Rei	route 🗌 🛛 Goog	le Earth Filename				
Occurrence	1	Avulsion near cros	sing location on up	per portion of lo	w-angle broad fa	n (subchannels pres	ent).
Factor		The lateral extent is especially evider		will need to be cl	hecked in the fiel	d. Avulsion below cr	ossing
Estimated Frequency	0.1	Broad fan and pre	sence of subchann	els suggest that a	vulsion may occu	ur during large storm	n event.
Vunerability Factor	0.001	Small stream.					
Mitigation Options	1.00E-02						

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Frequency Loss of Containment	1.00E-06	FLOC/m	5.00E-09

_				
Geol	hazard	Detail	חו	2/15
U LU	IIULUIM	Detail		Z4J

Category	Debris Flow		KP (Rev \	/\ Ctart	579.94	Feature	50
Category	Depris Flow				579.94	reature	50
Source	Geotechnica	l Report	KP (Rev	V) End	580.04		
		echnical Report on the Alberta to Kitimat, BC.		or the Enl	oridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google E	arth Filename				
Occurrence Factor	0.01		; include: low channel g rea - screening criteria d			ep valley sidewalls,	
Estimated Frequency	0.01	No indication of recer	t debris flow events, ve	egetated	channel. Field ch	eck recommended.	
Vunerability Factor	0.01	Deposition or erosion immediate vicinity of	is expected based on a the proposed route.	n approx	imate channel gr	radient of 10° in the	
Mitigation Options	1.00E-02						
Applied M Deep burial						Standard	Factor 0.01
Mitigation Site-specific	1						

1.00E-08 FLOC/m

1.00E-10

Geohazard Detail ID 348

Kinuseo Creek near alignment

Category	Lateral Migr	ation	KP (F	Rev V) Start	580.7	Feature	51
Source	Geotechnica	l Report	КР	Rev V) End	581.8		
		echnical Report on the P Alberta to Kitimat, BC. N		. R for the Enbi	ridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google Ea	orth Filename				
Occurrence Factor	0.01		ravel bar erosion/	deposition, me	eander bends a	pe. Mobile channel with nd oxbows. Route 50-6 rosion.	
Estimated Frequency	0.001	Route located on sides	lope above floodp	lain.			
Vunerability Factor	0.1	30 m wide channel, bu erosion hazard).	t potential for larg	ger areas of exp	posed pipe (pip	eline parallel to lateral	
Mitigation Options	1.00E+00	Further review require	d, may require rel	ocation to the	north subject t	o field review.	
Applied M	itgations					Standard F	actor
Mitigation Site-specific	1						

Frequency Loss of Containment

FLOC/m 1.00E-06

5.88E-10

Geohazard	Detail	ID	5
-----------	--------	----	---

Five Cabin Creek

Category	Avulsion		КР (І	Rev V) Start	582.16	Feature	52
Source	Geotechnica	l Report		(Rev V) End	583.1		
		echnical Report on the F Alberta to Kitimat, BC. I	•	v. R for the Ent	oridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google E	arth Filename				
Occurrence Factor	1	The channel is high rel avulsion (channel swite and deposition to shal	ching) over a widt	-			
Estimated Frequency	0.1	The channel morpholo events. Avulsion chann	• .			•	
Vunerability Factor	0.01	Large stream with high	n gradient.				
Mitigation Options	1.00E-02	Debris flow potential c	on fan may necess	itate deep cov	er.		

Applied Mitgations S	tandard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1.00E-05
-------------------------------	----------

FLOC/m

8.70E-09

Geohazard	Detail ID
-----------	-----------

Five Cabin Creek

246

Category	Debris Flow		KP (Rev V) Start	582.16	Feature		
Source	Geotechnica	l Report	KP (Rev V) End	583.1			
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the Enl March 2010	bridge Northern (Gateway Project		
Legacy	Re	route 🗌 Google	Earth Filename				
Occurrence Factor	1		s include moderate to steep char on from valley sidewalls, active cl	•			
Estimated Frequency	0.1	Non-vegetated active recommended.	e channel suggests relatively frequ	uent debris flow e	events. Field check		
/unerability Factor	0.01	Deposition or erosion is expected based on an approximate channel gradient of 3° in the immediate vicinity of the proposed route.					
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations				Standard Facto		
Deep buria					0.01		
Mitigation Site-specific	1						

Frequency Loss of Containment

8.70E-09

FLOC/m

Geohazard	Detail
-----------	--------

Kinuseo Creek near alignment

Category	Lateral Migr	ation	KP (Rev V) Sta	rt 587.74	Feature 53
Source	Geotechnica		KP (Rev V) Er		
	Overall Geot	-	ipeline Route Rev. R for the		Gateway Project
Legacy	🗌 Rei	route 🗹 Google Ea	rth Filename		
Occurrence Factor	0.1	been undercut by creel	eo Creek approaches route k. Mobile channel with rece ander bends and oxbows.		
Estimated Frequency	0.01	Route located on sidesl	ope above floodplain.		
Vunerability Factor	0.1	30m wide channel, but erosion hazard).	potential for larger areas c	of exposed pipe (pipe	eline parallel to lateral
Mitigation Options	1.00E-02	Recommend reroute fu	rther to the north.		
Applied M	itgations				Standard Factor
Reroute					0.01
Mitigation Site-specific	1				

ID 349

Frequency Loss of Containment

1.00E-06

FLOC/m

2.50E-09

Category	Avulsion				(Rev V) Start	588.86	Feature
Source	Assessment	based on re	view of avai		KP (Rev V) End	589.6	
Legacy	Rei	route 🗌	Google Ea	arth Filename			
ccurrence Factor	1		fied on LiDAI doned chanr		shows evidence	of former avulsio	n events (fan morphology
stimated Frequency	0.1	Frequency	is expected	to correspon	d with major sto	rm events.	
nerability Factor	0.001	Small strea	am.				
Aitigation Options	1.00E-02						

Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01
---	------

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	

Category	Lateral Migr	ation		K	(Rev V) Start	590.3	Feature
Source	Geotechnica	l Report			KP (Rev V) End	590.68	
	Overall Geot Bruderheim,			•	Rev. R for the En	bridge Northern	Gateway Project
Legacy	🗌 Rei	route 🗸	Google Ea	arth Filename			
Occurrence Factor	1	Flat-lying t	opography,	historical high	mobility (potent	ial for lateral mig	ration).
Estimated Frequency	0.1				and upstream from esting possible ge	-	on. Creek becomes more
unerability Factor	0.001	30m wide	channel.				
Mitigation Options	1.00E-03		sing propose shorten len		o lateral erosion	and scour should	be evaluated.
Applied M	itgations						Standard Fac
Trenchless	Methods ente	r/exit outsid	le extents of	lateral migrat	ion		0.0

Mitigation	1	1
Site-specific		

Frequency Loss of Containment	1.00E-07

FLOC/m

2.63E-10

Geoh	azard	Detail ID 467	7 Kinuseo Cree	k	
Category	Scour		KP (Rev V) Start	590.3	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	590.68	
Legacy	Rei	route 🗹 Google Earth F	ilename		
Occurrence Factor	1	Unconsolidated river bed ma	aterial expected at crossing	location.	
Estimated Frequency	0.01	Frequency of significant scor return period.	ur events correspond to hig	h runoff events	typically 25 to 200 year
unerability Factor	0.001	30m wide channel.			
Mitigation Options	1.00E-03	Bored crossing proposed. Reroute to shorten length ex	xposed to lateral erosion a	nd scour should l	pe evaluated.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

2.63E-11

Frequency Loss of Containment	1.00E-08	FLOC/m
requeries coss of containinent	1.000 00	1 600, 111

Geohazard	Detail
-----------	--------

ID 390

Category	Slide - shallo	w/moderate	deep	K	P (Rev V) Start	598.82	Feature	54
Source	Geotechnical Report			I	KP (Rev V) End	598.98		
		echnical Repo Alberta to Ki			Rev. R for the I	Enbridge Northe	rn Gateway Project	
Legacy	Re	route 🗸	Google Ea	rth Filename				
Occurrence Factor	1	slopes pron	e to failure i	if disturbed. C	onsider screen	ing criteria met v	ast side. Debris-mantl with defined occurren blow-off failure (Marcl	ce.
Estimated Frequency	1	Activity of s	lide unknow	ın.				
Vunerability Factor	0.01	Route appe	ars to cross	near crest of s	slide 100 m acr	oss. Further inve	estigation required.	
Mitigation Options	1.00E-03		the north-ea ability condit		rom crest of b	low-off failure is	assumed. Grading to	
Applied N	litgations						Standa	rd Factor
Reroute								0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-05

FLOC/m

3.33E-08

Geohazard Detail ID 350 Murray River							
Category	Lateral Migr	ation	KP (Rev V) Start	600.8	Feature		
Source	Geotechnica	l Report	KP (Rev V) End	600.92			
Legacy	Bruderheim,	Alberta to Kitimat, BC. M	peline Route Rev. R for the En larch 2010 rth Filename	bridge Northern (Gateway Project		
Occurrence Factor	1	Lateral erosion towards	s west.				
Estimated Frequency	0.1	Sand banks along west s	side of river are prone to erosi	on.			
unerability Factor	0.01	Vulnerable areas are we	est end of aerial crossing and a	adjacent pipeline.			

Mitigation Options	1.00E-03	Riprap of foundations and adjacent pipeline. Design of foundations.

Applied Mitgations	Standard Factor
Armoured stream banks suitably designed	0.01

Mitigation	0.1	Riprap of foundations and adjacent pipeline - 0.1. Foundation design - 0.01
Site-specific		

8.33E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Category	Scour		KP (Rev V) Start	600.8	Feature
Source	Geotechnica	l Report	KP (Rev V) End	600.92	
	Overall Geot	·	ipeline Route Rev. R for the Enl	oridge Northern G	ateway Project
Legacy	Rei	route 🗌 Google Ea	rth Filename		
ccurrence Factor	1	Unconsolidated river b	ed material expected at crossin	g location.	
Stimated Frequency	0.01	Frequency of significan return period.	t scour events correspond to hi	gh runoff events	typically 25 to 200 year
nerability Factor	0.1	70m wide channel.			
Aitigation Options	1.00E-03	Aerial crossing propose	d.		

	1	
Mitigation	1	
-		
Site-specific		
nee speeme		

8.33E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID	392 Hook Cree	ek east approa	ach slopes
Category	Slide - shallo	ow/moderate deep	KP (Rev V) Sta	rt 604.6	Feature 56
Source	Geotechnica	l Report	KP (Rev V) En	d 604.64	
		technical Report on the F , Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the March 2010	Enbridge Northern	Gateway Project
Legacy	Re Re	route 🗌 Google E	arth Filename		
Occurrence Factor	1	Minor surface failures	on approach slopes (stream	undercutting). Docu	umented occurrence.
Estimated Frequency	1	Expected to be relative	ely frequent.		
Vunerability Factor	0.001	Shallow and local slide	s considered unlikely to fail	pipe.	
Mitigation Options	1.00E-03	HDD crossing proposed	d.		
Applied M	itgations				Standard Factor
Deep burial	below slide				0.001

4.00E-09

FLOC/m

Geoh	azard	Detail ID	351 Hook Creek		
Category	Lateral Migr	ation	KP (Rev V) Start	604.64	Feature 57
Source	Geotechnica	l Report	KP (Rev V) End	604.76	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the Enl March 2010	bridge Norther	n Gateway Project
Legacy	Rer	route 🗌 🛛 Google I	Earth Filename		
Occurrence Factor	1	Braided channel on flo depostion/erosion.	oodplain within steep valley. Sub	ochannels and	active gravel bar
Estimated Frequency	0.1		r deposition/erosion suggest rela ed from up channel areas.	tively high free	quency of lateral mobility
Vunerability Factor	0.001	30 m wide channel.			
Mitigation Options	1.00E-03	HDD crossing propose	ed.		

Applied Mitgations Sta	andard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

		_	
NA:tication	1		
Mitigation	1		
Site-specific			

Frequency Loss of Containment	1.00E-07	FLOC/m	

Geoh	azard	Detail ID	469 Hoc	ok Creek			
Category	Scour		KP (Re	ev V) Start	604.64	Featur	e 57
Source	Geotechnica	l Report	KP (F	Rev V) End	604.76		
		echnical Report on the Alberta to Kitimat, BC.		R for the Ent	oridge Northe	ern Gateway Projec	t
Legacy	Rer	route 🗌 🛛 Google I	Earth Filename				
Occurrence Factor	1	Unconsolidated river	bed material expect	ed at crossin	g location.		
Estimated Frequency	0.01	Frequency of significa return period.	int scour events corr	espond to hi	gh runoff eve	ents typically 25 to 2	200 year
Vunerability Factor	0.001	30m wide channel.					
Mitigation Options	1.00E-03	HDD crossing propose	ed.				

Applied Mitgations S	tandard Facto	or
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001	.]

Mitigation	1
te-specific	

		-	
Frequency Loss of Containment	1.00E-08	FLOC/m	5.00E-11

Bruderheim, Alberta	rt KP (Rev V) End 604.8 al Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project a to Kitimat, BC. March 2010
Overall Geotechnica Bruderheim, Alberta Legacy Reroute	al Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project a to Kitimat, BC. March 2010 Google Earth Filename
Bruderheim, Alberta	Google Earth Filename
Occurrence 1 Minor	
	r surface failures on approach slopes (stream undercutting). Documented occurrence.
Factor	
Estimated 1 Expect Frequency	cted to be relatively frequent.
nerability 0.001 Shallo Factor	ow and local slides considered unlikely to fail pipe.
Aitigation 1.00E-03 HDD b Options	below sliding surface

Mitigation	1
Site-specific	

Frequency Loss of Containment 1.00E-06

FLOC/m

2.50E-08

Geohazard Detail

226 Pas

Pass through Rockies

Category	Avalanche		KP (Rev V) Start	614	Feature		
Source	Geotechnica	l Report	KP (Rev V) End	614.2			
			ipeline Route Rev. R for the Er	nbridge Northern	Gateway Project		
	Bruderheim,	Alberta to Kitimat, BC. N	larch 2010				
Legacy	🗌 Rer	oute 🗌 🛛 Google Ea	rth Filename				
Occurrence Factor	0.01 Avalanche track terminates 600 m above route. Area has snowpack accumulation for potential avalanche, however, slopes proximate to route are less steep and forested. Partially meets screening criteria.						
Estimated Frequency	0.0001		erminus of defined avalanche tracks are located 600 m upslope from route, frequency of events baching pipeline is expected to be very low.				
Vunerability Factor	0.001	Deposition zone or bey	ond - 14°				
Mitigation Options	1.00E+00						
Applied M	itgations				Standard Factor		
Mitigation Site-specific	1						

Frequency Loss of Containment

1.00E-09

FLOC/m

Geol	hazard	Detail	ID	227

			-				
Category	Avalanche		KP (Rev V) Start	615	Feature		
Source	Geotechnica	Report	KP (Rev V) End	615.2			
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En /larch 2010	bridge Northern	Gateway Project		
Legacy	Rer	oute 🗌 Google Ea	orth Filename				
Occurrence Factor	0.01	0.01 Avalanche track terminates 400 m above route. Area has snowpack accumulation for potential avalanche, however, slopes proximate to route are less steep and forested. Partially meets screening criteria.					
Estimated Frequency	0.0001		erminus of defined avalanche tracks are located 400 m upslope from route, frequency of events baching pipeline is expected to be very low.				
Vunerability Factor	0.001	Deposition zone or bey	rond - 14°				
Mitigation Options	1.00E+00						
Applied M	itgations				Standard Factor		
Mitigation Site-specific	1						

Frequency Loss of Containment 1.00E-09

4.00E-12

FLOC/m

-				
Gen	hazard	Detail	חו	2/17
	IIMEMIM	Detail		24/

Category	Debris Flow		KP (Rev V) Start	616.12	Feature58
Source	Geotechnical Report		KP (Rev V) End	616.54	
		technical Report on the P , Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern (Gateway Project
Legacy	🗌 Re	route 🗌 Google Ea	arth Filename		
Occurrence Factor	0		include; very poorly defined ste from valley sidewalls, small cat		
Estimated Frequency	0.001	Heavily forested chann	el suggests debris flow events d	occur very infrequ	iently or not at all.
Vunerability Factor	0.01		ccur, deposition or erosion wou in the immediate vicinity of the		
Mitigation Options	1.00E+00				
Applied M	litgations				Standard Factor
Mitigation	1				

0.00E+00

FLOC/m

0.00E+00

-				
Gen	hazard	Detail	חו	6
ULU	nazara		שו	U

Category	Avulsion		KP (Rev V) Star	r t 617.7	Feature				
Source	Geotechnica	l Report	KP (Rev V) En	d 618.52					
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the March 2010	Enbridge Northern	Gateway Project				
Legacy	Rei	route 🗌 Google Ea	arth Filename						
Occurrence Factor	0.1		sible alluvial fan. Further checks on avulsion potential recommended. Review of LiDAR Ma 2 show a moderately well defined fan, avulsion potential difficult to determine.						
Estimated Frequency	0.01	Heavily forested fan with no visible former channels or indications of activity/frequency, fiel review recommended. Channel currently occupies eastern margin, may be paleo-fan.							
Vunerability Factor	0.001	Small stream.							
Mitigation Options	1.00E+00	Deep cover mitigation	to be considered if required	based on further re	eview.				
Applied M	itgations				Standard Factor				
Mitigation Site-specific	1								

Frequency Loss of Containment

1.67E-09

FLOC/m

Geohazard	Detail	ID
-----------	--------	----

228 **Pas**

Pass through Rockies

Category	Avalanche		KP (Rev V) Start	618.5	Feature59				
Source	Geotechnica	l Report	KP (Rev V) End	618.6					
		echnical Report on the Pi Alberta to Kitimat, BC. N	peline Route Rev. R for the Ent Iarch 2010	oridge Northern	Gateway Project				
Legacy	🗌 Rei	route 🗌 Google Ea	rth Filename						
Occurrence	0.01		ates 300 m above route. Area h		•				
Factor		avalanche however slor screening criteria.	alanche however slopes proximate to route are less steep and forested. Partially meets reening criteria.						
Estimated	0.0001		alanche tracks are located 300	m upslope from	route, frequency of events				
Frequency		reaching pipeline is exp	ected to be very low.						
Vunerability Factor	0.001	At or beyond deposition	n zone - 3°						
Mitigation Options	1.00E+00								
Applied M	itgations				Standard Factor				
Mitigation Site-specific	1								

1.00E-09 FLOC/m

Geoh	azard	Detail	ID 393	Pas	ss throug	h Rockies			
Category	Slide - shallo	ow/moderate de	ер	KP (F	lev V) Start	619.2	Featu	re	60
Source	Geotechnica	eotechnical Report KP (Rev V) End 625.7							
	Overall Geot Bruderheim,	Gateway Projec	t						
Legacy	Rei	route 🗌 🛛 Go	oogle Earth Fil	ename					
Occurrence Factor	0.1	Locally steep to during construct			-	steep side hills. P r sliding.	otential for shal	low slides	5
Estimated Frequency	0.1	Occurrence cor	nsidered possik	ole upon ex	cavation of c	cuts. Frequency d	ifficult to assess		
Vunerability Factor	0	Sloughing of so	ft soils in cuts,	loss of con	tainment ev	ent not considere	ed possible.		
Mitigation Options	1.00E+00								
Applied M	litgations						Sta	ndard Fa	ctor
Mitigation Site-specific	1								

FLOC/m

0.00E+00

0.00E+00

Frequency Loss of Containment

Geo	hazard	Detail
-----	--------	--------

ID 229 Pass

Pass through Rockies

Category	Avalanche			KP (Rev V) Star	622.1	Feature 59
Source	Geotechnica	technical Report KP (Rev V) End				
			rt on the Pipeline mat, BC. March 2	Route Rev. R for the 010	Gateway Project	
Legacy	Rei	route	Google Earth File	ename		
Occurrence Factor	0.01	avalanche ge		er, would need to cro		umulation for potential ain to impact route.
Estimated Frequency	0.0001		defined avalanche eline is expected t		50 m upslope from i	route, frequency of events
Vunerability Factor	0.001	Likely beyond	d deposition zone	e - 0°		
Mitigation Options	1.00E+00					
Applied M	itgations					Standard Factor
Mitigation Site-specific	1					

FLOC/m

1.00E-09

1.00E-11

Frequency Loss of Containment

Geohazard	Detail	I
-----------	--------	---

ID 33 F

Category	Rockfall			KP (Rev V) Start	623.55	Feature	63
Source	Geotechnica	al Report		KP (Rev V) End			
		-	on the Pipeline F nat, BC. March 20	Pipeline Route Rev. R for the Enbridge Northern March 2010		n Gateway Project	
Legacy	🗌 Re	route 🗌 🛛 🔾	Google Earth File	name			
Occurrence Factor	0.1		pslope, visible rur	n pass. At least one obs nout comes within 70 r			
Estimated Frequency	0.1	Evidence of ac event over ~2		runout close to but no	ot crossing route.	Moderately frequent	t
/unerability Factor	0.01	Low relief terr rolling.	rain immediately	surrounding route. Exp	pect rock fragmen	ts to be decelerating	and
Mitigation Options	1.00E-02	Diversion berr	ns to be installed	where required.			
Applied M	itgations					Standard	Factor
Diversion b	erm						0.1

Frequency Loss of Containment	

1.00E-06 FLOC/m

4.55E-10

-				
Geo	hazard	Detail	ID	230

_					_	
Category	Avalanche		KP (Rev V) Start	624.3	Feature	59
Source	Geotechnica	l Report	KP (Rev V) End	624.32		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern	Gateway Project	
Legacy	C Rer	route 🗌 Google Ea	urth Filename			
Occurrence Factor	0.01	Section of cleared vege avalanches deposit are	tation crosses route although a upslope.	appears to be m	eltwater channel from	
Estimated Frequency	0.001	reaching pipeline is exp	alanche tracks are located 500 pected to be very low. Some un is likely meltwater channel. Re	certainty over o	rigin of section of cleare	
Vunerability Factor	0.001	At or beyond depositio	n zone - 11°			
Mitigation Options	1.00E+00					
Applied M	litgations				Standard Fa	actor
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-08 FLOC/m

Geo	hazard	Detail	ID
Geo	nazaru	Detall	ID

231

Category	Avalanche		KP (Rev V) Sta	art 624.48	Feature 59		
Source	Geotechnica	ll Report	KP (Rev V) E	nd 624.54			
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for th March 2010	e Enbridge Norther	n Gateway Project		
	5.000.000,						
Legacy	Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	0.01	Track of cleared veget avalanches deposited	ation crosses route althoug upslope.	h appears to be me	Itwater channel from		
Estimated	0.001				n route, frequency of events		
Frequency			pected to be very low. Som it is likely meltwater channe				
Vunerability	0.001	At or beyond depositi	on zone - 0°				
Factor							
Mitigation Options	1.00E+00						
Applied M	itgations				Standard Factor		
Mitigation	1						
Site-specific							

Frequency Loss of Containment1.00E-08FLOC/m

Geoha	azard	Detail	ID	232
		Detail		252

Catagory	Avalanche		KP (Rev V)	Start 625.5	Feature	59
]		reature	59
Source	Geotechnica	l Report	KP (Rev \	/) End 625.6		
		echnical Report on the P		r the Enbridge Northe	ern Gateway Project	
	Bruderneim,	Alberta to Kitimat, BC. N	larch 2010			
Legacy [Rei	route 🗌 Google Ea	orth Filename			
Occurrence	0.01	Avalanche track termin	ates 300 m above rout	e. Area has snowpack	accumulation for po	tential
Factor		avalanche however slop screening criteria.			-	
Estimated	0.001	Terminus of defined av	alanche tracks are loca	ted 300 m upslope fro	om route, frequency of	of events
Frequency		reaching pipeline is exp	ected to be very low.			
Vunerability	0.001	Deposition zone - 13°				
Factor						
Mitigation	1.00E+00					
Options						
Applied Mit	tgations				Stand	ard Factor
Mitigation	1					
Site-specific						

1.00E-08 FLOC/m

Geohazard	Detail	ID

Headwaters of Hominka River

Category	Slide - shallow/moderate deep		KP (Rev V) Start	627.3	Feature 6	64
Source	Geotechnica		KP (Rev V) End	628.7		
		echnical Report on the Pip Alberta to Kitimat, BC. Ma	peline Route Rev. R for the Enl arch 2010	bridge Northern	Gateway Project	
Legacy	🗌 Rei	route 🗌 Google Ear	th Filename			
Occurrence Factor	0.1	Shallow organics and soi potential for sliding.	il veneers may be subject to sl	iding over sloped	d rock. Considered credible	ž
Estimated Frequency	0.1	No evidence of direct oc	currence on route. Moderate	frequency expec	cted.	
Vunerability Factor	0	Sloughing of soft soils, Ic	oss of containment event not o	considered possi	ble.	
Mitigation Options	1.00E+00					
Applied M	itgations				Standard Facto	or
Mitigation Site-specific	1					

394

Frequency Loss of Containment

0.00E+00

FLOC/m

0.00E+00

Geohazard Detail ID 248

Headwaters of Missinka River

Category	Debris Flow		KP (Rev V) Start	629.7	Feature
Source	Geotechnica	Geotechnical Report KP (Rev V) E			
	Bruderheim,	Alberta to Kitimat, BC.		bridge Northern (Gateway Project
Legacy	Rei	route 🗌 Google E	arth Filename		
Occurrence Factor	0		s include; low channel gradient, d beyond fan - does not meet so		ed in open terrain.
Estimated Frequency	0.001	Crossing is located in a possible.	area where debris flow events a	re not anticipated	l - very infrequent if
Vunerability Factor	0.01	Deposition or erosion immediate vicinity of	would be expected based on ar the proposed route.	approximate cha	annel gradient of 2° in the
Mitigation Options	1.00E+00				
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

Frequency Loss of Containment

0.00E+00

FLOC/m

0.00E+00

_				
Geo	hazard	Detail	ID	249

Headwaters of Missinka River

•				600.0F	- .				
Category	Debris Flow		KP (Rev V) Start	630.35	Feature				
Source	Geotechnica	l Report	KP (Rev V) End	630.4					
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern	Gateway Project				
Legacy	Rer	route 🗌 Google Ea	arth Filename						
Occurrence Factor	0	0 Headwater conditions include; low channel gradient, only slightly incised in open terrain. Crossing located beyond fan - does not meet screening criteria.							
Estimated Frequency	0.001	Crossing is located in a possible.	rea where debris flow events a	re not anticipate	d - very infrequent if				
Vunerability Factor	0.01	Deposition or erosion i immediate vicinity of t	s expected based on an approx ne proposed route.	ximate channel g	radient of 5° in the				
Mitigation Options	1.00E+00								
Applied M	itgations				Standard Factor				
Mitigation Site-specific	1								

 Frequency Loss of Containment
 0.00E+00
 FLOC/m
 0.00E+00

Geohazard Detail	ID 250	Missinka River	

Category	Debris Flow		H	(Rev V) Start	632.1	Feature
Source	Geotechnical Report			KP (Rev V) End	632.2	
		echnical Report on the Alberta to Kitimat, BC		Rev. R for the Enl	oridge Northern	Gateway Project
Legacy	Rer	route 🗌 🛛 Google	Earth Filename			
Occurrence Factor	0	Headwater conditior Crossing located bey		-		ed in open terrain.
Estimated Frequency	0.001	Crossing is located in possible.	area where del	bris flow events ar	e not anticipate	d - very infrequent if
Vunerability Factor	0.01	Deposition or erosion immediate vicinity of			approximate ch	annel gradient of 2° in the
Mitigation Options	1.00E+00					
Applied M	litgations					Standard Factor
Mitigation Site-specific	1					

FLOC/m

0.00E+00

Frequency Loss of Containment 0.00E+00

Geohazard	Detail	
-----------	--------	--

Category	Debris Flow	1			KP	(Rev V) Start	633.92	2	Feature	69
Source	Geotechnical Report				KP (Rev V) End 633.96					
		technical Rep , Alberta to K				ev. R for the I	Enbridge No	orthern Gatew	ay Project	
Legacy	Re	route 🗌	Google	Earth File	ename					
Occurrence Factor	0.01							ely steep valley creening criter		
Estimated Frequency	0.01	Vegetated	channel w	ithout ind	dication c	of recent deb	ris flows, fi	eld check reco	mmended.	
Vunerability Factor	0.01	Deposition immediate					an approxir	nate channel g	gradient of 3°	in the
Mitigation Options	1.00E-02									
Applied M	itgations								Standard	d Factor
Deep buria	1									0.01

Mitigation	1	1
Site-specific		

Frequency Loss of Containment	

1.00E-08 FLOC/m

-				
Geo	hazard	Detail	ID	252

Category	Debris Flow				Feature	69		
Source	Geotechnica	l Report			KP (Rev V) End	635.12		
	Overall Geot Bruderheim,				e Rev. R for the E	nbridge Northern	Gateway Project	
Legacy	Rei	route 🗌	Google I	Earth Filenam	e			
Occurrence Factor	0.1			s include; stee ets screening o		nt, moderately ste	eep valley walls, signif	ficant
Estimated Frequency	0.01	Vegetated	channel wi	thout indicat	ion of recent deb	ris flows, field che	ck recommended.	
Vunerability Factor	0.01	-		would be exp the proposed		an approximate ch	annel gradient of 7° i	n the
Mitigation Options	1.00E-02							
Applied Mi	itgations						Standard	l Factor
Deep burial								0.01

/ itigation	1	
Site-specific		

FLOC/m

2.00E-09

Frequency Loss of Containment	1.00E-07
Frequency Loss of Containment	1.00E-07

29-Jan-13 Filter:

Geoh	azard	Detail	D 395	Valley slope River	es of Tributa	ry to Missinka	
Category	Slide - shallo	w/moderate deep		KP (Rev V) Start	636.7	Feature	70
Source	Geotechnica	l Report		KP (Rev V) End	639.3		
		echnical Report on th Alberta to Kitimat, B			nbridge Northern	Gateway Project	
Legacy	Rer	oute 🗌 🛛 Google	e Earth Filena	ime			
Occurrence Factor	0.1	Frequent wet surfac	ce soils prone	to sliding in cuts.			
Estimated Frequency	0.1	Occurrence conside	ered possible	upon excavation of c	cuts. Frequency d	ifficult to assess.	
Vunerability Factor	0	Sloughing of soft so	ils in cuts, los	s of containment eve	ent not considere	d possible.	
Mitigation Options	1.00E+00						
Applied M	itgations					Standard	Factor
Mitigation Site-specific	1						

FLOC/m

0.00E+00

0.00E+00

Frequency Loss of Containment

-		_		
Geo	hazard	Detail	ID	253

Category	Debris Flow				KP (Rev V) Start	637.14	Feature	69
Source	Geotechnica	l Report			KP (Rev V) End	637.2		
	Overall Geot Bruderheim,				te Rev. R for the Er	nbridge Northern	Gateway Project	
Legacy	🗌 Rei	oute	Google	Earth Filenan	ne			
Occurrence Factor	0.1			s include; ste ets screening		it, moderately ste	ep valley walls, signit	ficant
Estimated Frequency	0.01	Vegetated	channel w	ithout indica	ion of recent debr	is flows, field cheo	ck recommended.	
Vunerability Factor	0.01				based on an appro d route. Channel is	•	radient of 7° in the	
Mitigation Options	1.00E-02							
Applied M	itgations						Standard	l Factor
Deep buria								0.01
Deep burial	1							0.01

Frequency Loss of Containment

1.00E-07

FLOC/m

1.00E-09

Site-specific

-				
Geo	hazard	Detail	ID	254

Category	Debris Flow		KP (Rev V) Start	637.3	Feature 69
Source	Geotechnica	l Report	KP (Rev V) End	637.3	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Enl 1arch 2010	bridge Northern	Gateway Project
Legacy	Rer	route 🗌 Google Ea	rth Filename		
Occurrence Factor	0	No channel observed a	t location - does not meet scree	ening criteria.	
Estimated Frequency	0.001	Crossing is located in an infrequent if possible.	rea where debris flow events a	re not anticipate	d to be a hazard - very
Vunerability Factor	0.01	Deposition or erosion is immediate vicinity of th	s expected based on an approx ne proposed route.	imate channel gi	radient of 7° in the
Mitigation Options	1.00E+00				
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

 Frequency Loss of Containment
 0.00E+00
 FLOC/m

Geoh	azard	Deta	ail id 2		Valley slope River	es of Tributa	ry to Missinka
Category	Avalanche			ŀ	(P (Rev V) Start	637.9	Feature 71
Source	Geotechnica	l Report			KP (Rev V) End	638	
			port on the Pip Kitimat, BC. M		Rev. R for the Er	nbridge Northern	Gateway Project
Legacy	Rei	route 🗌	Google Ear	th Filename			
Occurrence Factor	0	No avalan	che occurence	e at kp.			
Estimated Frequency	0	No avalan	che occurence	e at kp.			
unerability Factor	0	No avalan	che occurence	e at kp.			
Mitigation Options	1.00E+00						
Applied M	litgations						Standard Factor
Mitigation Site-specific	1						

FLOC/m

0.00E+00

0.00E+00

Frequency Loss of Containment

-				
Gon	hazard	Detail		7
UEU	iiazaiu	ντιαπ	עו	/

Category	Avulsion		KP (Rev V) Start	638.48	Feature	68
Source	Geotechnica	l Report	KP (Rev V) End	638.64		
		echnical Report on t Alberta to Kitimat, E	the Pipeline Route Rev. R for the En BC. March 2010	bridge Northern	Gateway Project	
Legacy	Re Re	route 🗌 🛛 Goog	le Earth Filename			
Occurrence Factor	0.1	Possible alluvial fai	n. Further checks on avulsion poten	tial recommende	ed.	
Estimated Frequency	0.01	Paritially vegetated review recommend	d fan with no visible former channe ded.	ls or indications o	of activity/frequency, f	ield
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02		tion to be applied if required based ssitate deep cover.	on further revie	w. Debris flow potentia	al on
Applied M	itgations				Standard	Factor
Pipeline be	low maximum	predicted scour dep	oth along alluvial fan impact area			0.01

Site-specific

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

6.67E-11

Geo	hazard	l Detail
-----	--------	----------

ID 255 **Tribu**

Category	Debris Flow		к	P (Rev V) Start	638.48	Feature	69
Source	Geotechnica	l Report	_] I	KP (Rev V) End	638.64		
		echnical Report on the P Alberta to Kitimat, BC. N	-	Rev. R for the Er	bridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	Headwater conditions catchment area - meet		-	t, moderately ste	ep valley walls, sig	nificant
Estimated Frequency	0.01	Vegetated channel wit	hout indicatior	n of recent debri	s flows, field cheo	ck recommended.	
Vunerability Factor	0.01	Deposition or erosion i approximate channel g		•		•	with an
Mitigation Options	1.00E-02	Deep burial.					
Applied M	-					Standa	ard Factor
Deep buria							0.01
Mitigation Site-specific	1						

Frequency Loss of	f Containment
-------------------	---------------

1.00E-07 FLOC/m

6.67E-10

Geoh	azard	Deta	1 1 ID	234	Valley slop River	es of Tributa	nry to Missinka	1
Category	Avalanche				KP (Rev V) Start	638.9	Feature	71
Source	Geotechnica	l Report			KP (Rev V) End	639.3		
	Overall Geot Bruderheim,				ute Rev. R for the E)	nbridge Northern	Gateway Project	
Legacy	Rei	route 🗌	Google E	arth Filena	me			
Occurrence Factor	0.1		possible ava tion of lack		cks terminate 40 m	upslope of route	Meets screening cri	teria
Estimated Frequency	0.001	Forested a	t crossing lo	ocation, frec	quency of large ava	lanche expected	to be low.	
Vunerability Factor	0.001	Deposition	zone - 11°					
Mitigation Options	1.00E+00							
Applied M	itgations						Standa	rd Factor
Mitigation Site-specific	1							

1.00E-07

FLOC/m

2.50E-10

_				
Geo	hazard	Detail	ID	256

Tributary to Missinka River

Category	Debris Flow		KP (Rev V) Start	638.9	Feature	69
Source	Geotechnica	l Report	KP (Rev V) End	638.9		
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the Enb Warch 2010	ridge Northern (Gateway Project	
Legacy	Rer	oute 🗌 🛛 Google Ea	arth Filename			
Occurrence Factor	0	No channel observed a	at location - does not meet scree	ning criteria.		
Estimated Frequency	0.001	Crossing is located in a infrequent if possible.	rea where debris flow events are	e not anticipated	d to be a hazard - very	
Vunerability Factor	0.01	Deposition or erosion vicinity of the propose	is expected based on an approxi d route.	mate gradient o	f 6° in the immediate	
Mitigation Options	1.00E+00					
Applied M	itgations				Standard	Factor
Mitigation Site-specific	1					

Geohazard Detail ID 257

Category	Debris Flow		КР	(Rev V) Start	639.58	Feature
Source	Geotechnica	l Report	к	P (Rev V) End	639.6	
Legacy	Bruderheim,	echnical Report on the F Alberta to Kitimat, BC. I route Google E	•	ev. R for the Enl	bridge Northern	Gateway Project
81						
Occurrence Factor	0.01	Headwater conditions sediment supply poter in tributary but unlike	ntial. Large catch	ment area with	many tributarie	sidewalls with high s. Debris flow may initiate
Estimated Frequency	0.01	Vegetated channel wit	hout indication	of recent debris	flows, field che	ck recommended.
Vunerability Factor	0.01	Deposition or erosion immediate vicinity of t		ed on an approx	imate channel g	radient of 2° in the
Mitigation Options	1.00E-02	Deep burial				
Applied M	itgations					Standard Facto
Deep burial						0.01
Mitigation Site-specific	1					

Frequency Loss of Containment

FLOC/m 1.00E-08

Geoh	azard	Deta	il id 3	396	Missinka F	River valley sl	opes	
Category	Slide - shallo	w/moderate	e deep		KP (Rev V) Star	t 642.68	Feature	72
Source			ort on the Din	olino Pouto	KP (Rev V) End	d 643.7 Enbridge Northern	Catoway Project	
			timat, BC. Ma		Rev. R for the	Enbridge Northern	Galeway Project	
Legacy	Rer	route 🗌	Google Earl	th Filename				
Occurrence Factor	0.1	Gullied till,	outwash and	glaciolacus	trine materials	prone to shallow sl	iding in cuts	
Estimated Frequency	0.1	Occurrence	considered p	oossible upo	n excavation o	f cuts. Frequency d	ifficult to assess.	
Vunerability Factor	0	Sloughing o	f soft soils in	shallow cut	s, loss of conta	inment event not c	onsidered possible.	
Mitigation Options	1.00E+00							
Applied M	litgations						Standard	Factor
Mitigation Site-specific	1							

Frequency Loss of Containment	0.00E+00	FLOC/m	0.00E+00

cour		KP (Rev V) Start	643.38	Feature
Assessment k	based on review of avai	KP (Rev V) End	643.46	
Rer	route 🗌 Google Earth F	ilename		
1	Unconsolidated river bed ma	aterial expected at crossing	g location.	
0.01	Frequency of significant scor return period.	ur events correspond to hi	gh runoff events t	typically 25 to 200 year
0.001	25m wide channel.			
1.00E-03	Bored crossing proposed.			
	ssessment Rer 1 0.01 0.001	ssessment based on review of avai Reroute Google Earth F 1 Unconsolidated river bed m 0.01 Frequency of significant scorreturn period. 0.001 25m wide channel.	ssessment based on review of avai KP (Rev V) End Reroute Google Earth Filename 1 Unconsolidated river bed material expected at crossing 0.01 Frequency of significant scour events correspond to his return period. 0.001 25m wide channel.	ssessment based on review of avai KP (Rev V) End 643.46 Reroute Google Earth Filename 1 Unconsolidated river bed material expected at crossing location. 0.01 Frequency of significant scour events correspond to high runoff events to return period. 0.001 25m wide channel.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Wittigation	-
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m

Geoh	azard	Detail II) 397	Missinka Riv	ver area			
Category	Slide - shallo	ow/moderate deep		KP (Rev V) Start	643.7	Feature	73	
Source	Geotechnica	l Report		KP (Rev V) End	668.7			
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	🗌 Rei	route 🗌 🛛 Google	Earth Filename					
Occurrence Factor	0.1	Glaciolacustrine dep	osits, moderate	ly steep slopes, kr	nown stability pro	blems on cuts		
Estimated Frequency	0.1	Occurrence consider	ed possible upc	on excavation of cu	uts. Frequency dil	ficult to assess.		
Vunerability Factor	0	Sloughing of soft soil	ls in shallow cut	s, loss of containn	nent event not co	nsidered possible.		
Mitigation Options	1.00E+00							
Applied M	itgations					Standard Fa	ctor	
Mitigation Site-specific	1							

FLOC/m

0.00E+00

Tributary to Missinka River

Category	Debris Flow		КР (Rev V) Start	Feature			
Source	Geotechnical Report		KP (Rev V) End 645.96					
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Re	route 🗌 Google I	Earth Filename					
Occurrence Factor	0.01		vay from steep terr	ain and most		dwater catchment area. would likely deposit higher		
Estimated Frequency	0.01	Vegetated channel without indication of recent debris flows, field check recommended.						
Vunerability Factor	0.01	Deposition or erosion immediate vicinity of		on an approx	imate channel g	radient of 6° in the		
Mitigation Options	1.00E-02							
Applied M	itgations					Standard Factor		
Deep burial						0.01		
Mitigation Site-specific	1							

FLOC/m

1.00E-10

1.00E-08

Frequency Loss of Containment

Tributary to Missinka River

Category	Debris Flow		KP (Rev V) Start	646.7	Feature				
Source	Geotechnical Report		KP (Rev V) End	647.24					
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010								
Legacy	Re	route 🗌 Google Ea	rth Filename						
Occurrence	0.01	Headwater conditions i	nclude: steep channel gradient	, significant head	lwater catchment area.				
Factor		Crossing is located away from steep terrain and most of the material would likely deposit higher up to the east - screening criteria only partially met.							
Estimated Frequency	0.01	Vegetated channel without indication of recent debris flows, field check recommended.							
Vunerability	0.01		vould be expected based on an		0				
Factor		downgradient of fan.	ne pipeline should a debris flow	<i>i</i> be possible. Cro	ssing is located				
Mitigation Options	1.00E-02								
Applied M	itgations				Standard Factor				
Deep burial					0.01				
Mitigation Site-specific	1								

Frequency Loss of Containment

FLOC/m

	Scour		KP (Rev V) Start	648.1	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	648.2	
Legacy	Re Re	route 🗌 Google Earth F	ilename		
urrence Factor	1	Unconsolidated river bed m	aterial expected at crossing	glocation.	
imated equency	0.01	Frequency of significant sco return period.	ur events correspond to hig	gh runoff events	typically 25 to 200 ye
erability Factor	0.001	40m wide channel.			
itigation	1.00E-03				

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation 1
Site-specific

Frequency Loss of Containment	1.00E-08	FLOC/m	1.00E-10

260

Tributary to Missinka River

_				·		_		
Category	Debris Flow		КР	(Rev V) Start	652.1	Feature		
Source	Geotechnical Report		KP	KP (Rev V) End 652.56				
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rer	route 🗌 Google E	arth Filename					
Occurrence Factor								
Estimated 0.01 Vegetated channel without indication of recent debris flows, field check recommen Frequency								
Vunerability Factor	0.01 Deposition or erosion is expected along route which crosses the upper portion of the fan with approximate channel gradient of 6° in the immediate vicinity of the pipeline.							
Mitigation Options	1.00E-02	Deep burial may be re	quired upon furt	her review.				
Applied M Deep burial						Standard Factor		
Mitigation Site-specific	1							

FLOC/m

1.00E-09

1.00E-07

Frequency Loss of Containment

Category	Avulsion		KP (Rev V) Start 652.1	Feature
Source	Assessment	based on review of avai	KP (Rev V) End 652.56	
Legacy	Re	route 🗌 Google Earth	Filename	
Occurrence Factor	1	channel visible. Path profile	12) shows moderately well defined fan w e drawn across fan suggest midsection is e nd over approximately 500 m.	
stimated Frequency	0.1	Forested fan however form	er channels are visible on LiDAR imagery.	
nerability Factor	0.001	Small stream.		
Vitigation Options	1.00E-02			

Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01
---	------

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m

-				
Geo	hazard	Detail	ID	261

Tributary to Missinka River

Category	Debris Flow		KĐ	(Rev V) Start	655.1	Feature	
						i cature	
Source	Geotechnica			P (Rev V) End	655.22		
		echnical Report on the Alberta to Kitimat, BC.		ev. R for the En	bridge Northern	Gateway Project	
	Brademenny						
Legacy	Re Re	route 🗌 🛛 Google E	arth Filename				
Occurrence Factor	0.1	Headwater conditions catchment area - mee		•	t, moderately sto	eep valley walls, signi	ficant
Factor							
Estimated Frequency	0.01	Vegetated channel with	thout indication	of recent debris	s flows, field che	ck recommended.	
Vunerability	0.01	Deposition or erosion	is expected alon	g route which c	rosses fan apex	with an approximate	
Vunerability0.01Deposition or erosion is expected along route which crosses fan apex witFactorchannel gradient of 12° in the immediate vicinity of the pipeline.							
Mitigation	1.00E-02	Deep burial.					
Options							
Applied M	itactions					Standard	d Eactor
Deep burial	-					Stalluar	0.01
Deep build	l						0.01
Mitigation	1						
Site-specific							

Frequency Loss of Containment

FLOC/m

Geohazard Detail III

Tributary to Missinka River

262

Category	Debris Flow		KP (Rev V) Start	656.26	Feature
Source	Geotechnica	l Report	KP (Rev V) End	656.36	
		echnical Report on the Pi Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Enb 1arch 2010	ridge Northerr	n Gateway Project
Legacy	Rei	route 🗌 Google Ea	rth Filename		
Occurrence Factor	0.1	Headwater conditions i catchment area - meets	nclude: steep channel gradient, s screening criteria.	moderately st	eep valley walls, significant
Estimated Frequency	0.01	Vegetated channel with	nout indication of recent debris	flows, field che	eck recommended.
Vunerability Factor	0.01	-	s expected based on an approxi ne proposed route. Fan is locate		-
Mitigation Options	1.00E-02	Deep burial.			
Applied M	itgations				Standard Factor
Deep buria					0.01
Mitigation Site-specific	1				

Frequency Loss of Containment

1.00E-07 FLOC/m

Tributary to Missinka River

			··- /- ··> -		-			
Category	Debris Flow		KP (Rev V) Start	659.66	Feature			
Source	Geotechnica	l Report	KP (Rev V) End	659.76				
	Bruderheim,	Alberta to Kitimat, BC. Mar		bridge Northern	Gateway Project			
Legacy	Re	route 🗌 Google Earth	n Filename					
Occurrence	0.1		lude: steep upstream chann	- ·				
Factor		that do not show evidence of major sediment contribution. Smaller sized catchment area but still considered capable of generating debris flow - screening criteria met.						
Estimated	0.01	Vegetated channel without	ut indication of recent debris	s flows, field chee	ck recommended.			
Frequency								
/unerability	0.01		xpected based on an approx		radient of 8° in the			
Factor		immediate vicinity of the	proposed route. Channel is o	confined.				
Mitigation	1.00E-02	Deep burial may be requir	red upon further review.					
Options								
Applied M	litgations				Standard Facto			
Deep buria	I				0.01			
Mitigation Site-specific	1							

Frequency Loss of Containment

1.00E-08

FLOC/m

Geohazard	Detail
-----------	--------

ID 264

Category	Debris Flow			KP (Rev V) Start	661.36	Feature
Source	Geotechnica	l Report		KP (Rev V) End	661.46	
			t on the Pipeline Rou mat, BC. March 2010	te Rev. R for the Enl	oridge Northerr	Gateway Project
Legacy	Re Re	route	Google Earth Filenan	ne		
Occurrence Factor	0.1		onditions include: ste ea - meets screening		, moderately st	eep valley walls, significant
Estimated Frequency	0.01	Vegetated ch	annel without indicat	tion of recent debris	flows, field che	eck recommended.
Vunerability Factor	0.01		r erosion is expected cinity of the pipeline.		imate channel ខ្ល	gradient of 3° in the
Mitigation Options	1.00E-02	Deep burial n	nay be required upon	further review.		
Applied M	litgations					Standard Factor
Deep buria						0.01

Mitigation 1			
	Mitigation	1	1
NTE-SPECIFIC	Site-specific		

Frequency Loss of Containment	1.00E-07
-------------------------------	----------

1.00E-09

FLOC/m

265

Category	Debris Flow		ŀ	(P (Rev V) Start	662.02	Feature
Source	Geotechnica	l Report		KP (Rev V) End		
		echnical Report on Alberta to Kitimat,		Rev. R for the Enl	oridge Northern	Gateway Project
Legacy	Re	route 🗌 🛛 Goog	gle Earth Filename			
Occurrence Factor	0.1		d sediment accum			alls with potential for chment area - meets
Estimated Frequency	0.01	Vegetated channel without indication of recent debris flows, field check recommended.				
Vunerability Factor	0.01	Deposition or erosion is expected based on an approximate channel gradient of 5° in the immediate vicinity of the proposed route.				
Mitigation Options	1.00E-02	Deep burial may be required upon further review.				
Applied M	itgations					Standard Factor
Deep buria						0.01

1

Frequency Loss of Containment	1.00E-07

FLOC/m

Geohazard	Detail
------------------	--------

ID 266

Category			k	KP (Rev V) Start 665.22 KP (Rev V) End 665.3		Feature	
Source							
		echnical Report on the F Alberta to Kitimat, BC. M	Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010				
Legacy	Reroute Google Earth Filename						
Occurrence Factor	0.1	Headwater conditions include; steep channel gradient, steep valley walls, significant catchment area - meets screening criteria.					:chment
Estimated Frequency	0.01	Vegetated channel without indication of recent debris flows, field check recommended.					· ·
Vunerability Factor	0.01	Deposition or erosion is expected along route which crosses the upper portion of the fan with an approximate channel gradient of 5° in the immediate vicinity of the pipeline. Deep burial may be required upon further review.				n with an	
Mitigation Options	1.00E-02						
Applied M						Stan	dard Factor
Deep buria							0.01

Mitigation	1	
Site-specific		

Frequency Loss of Containment	1.00E-07

FLOC/m

67 **Trib**ι

Category				KP (Rev V) Start	666.46	Feature	
Source				KP (Rev V) End	666.54		
		ll Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project rheim, Alberta to Kitimat, BC. March 2010					
Legacy	y 🗌 Reroute 🗌 Google Earth Filename						
Occurrence Factor	0.1	Headwater conditions include: steep channel gradient, steep valley walls, significant catchment area - meets screening criteria.					
Estimated Frequency	0.01	Vegetated channel without indication of recent debris flows, field check recommended. Avulsion potential should be evaluated.					
Vunerability Factor	0.01	Deposition or erosion is expected along route which crosses the middle-portion of an incised fan with an approximate channel gradient of 4° in the immediate vicinity of the pipeline.					
Mitigation Options							
Applied M Deep burial	-					Standard Factor	

Mitigation 1 Site-specific

Frequency Loss of Containment 1.00E-07

FLOC/m

Geohazard	Detail
-----------	--------

ID 268

			667.82	Feature		
Geotechnical Report		KP (Rev V) End	668.58			
	-		bridge Northern C	Sateway Project		
Rei	route 🗌 Google Ea	rth Filename				
0	Headwater conditions include: very poorly defined channel, slightly incised with little sediment contribution, small catchment - does not meet screening criteria.					
0.001	Crossing is located in area where debris flow events are not anticipated to be a hazard - very infrequent if possible.					
0.01						
1.00E+00						
gations				Standard Factor		
1						
	Overall Geot Bruderheim, Re 0 0.001 0.001 1.00E+00 gations	Overall Geotechnical Report on the P Bruderheim, Alberta to Kitimat, BC. N Reroute Google Ea 0 Headwater conditions i contribution, small cato 0.001 Crossing is located in an infrequent if possible. 0.01 Deposition or erosion is approximate channel g	Overall Geotechnical Report on the Pipeline Route Rev. R for the En Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 0 Headwater conditions include: very poorly defined ch contribution, small catchment - does not meet screen 0.001 Crossing is located in area where debris flow events al infrequent if possible. 0.01 Deposition or erosion is expected along route which capproximate channel gradient of 5° in the immediate 1.00E+00	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern O Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 0 Headwater conditions include: very poorly defined channel, slightly incle contribution, small catchment - does not meet screening criteria. 0.001 Crossing is located in area where debris flow events are not anticipated infrequent if possible. 0.01 Deposition or erosion is expected along route which crosses the upper approximate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the programmate channel gradient of 5° in the immediate vicinity of the programmate channel gradient of 5° in the programmate channel gradient of		

Frequency Loss of Containment

0.00E+00 FLOC/m

0.00E+00

Geohazard Detail	ID 352	Parsnip River

Category	Lateral Migration		KP (Rev V) Start	673.6	Feature	77
Source	Geotechnica	l Report	KP (Rev V) End	674.14		
		echnical Report on the Alberta to Kitimat, BC	e Pipeline Route Rev. R for the Enl C. March 2010	oridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google	Earth Filename			
Occurrence Factor	1	Oxbows and meander scars near crossing indicate previous lateral erosion. Wide flat valley bottom (part of Rocky Mountain Trench). River channel is toward the east side. Swamp and muskeg terrain with shallow groundwater across valley bottom to west.				ł
Estimated Frequency	0.1	Preliminary review o	f LiDAR indicates that lateral eros	ion is a possibilit	у.	
Vunerability Factor	0.1	70m wide channel (c	could be wider during a lateral ero	sion event).		
Mitigation Options	1.00E-03	HDD crossing propos	sed.			

Applied Mitgations Sta	andard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

Geohazard Detail	ID 472	Parsnip River

Category	Scour		KP (Rev V) Start	673.6	Feature	77
Source	Geotechnica	l Report	KP (Rev V) End	674.14		
		echnical Report on the Alberta to Kitimat, BC	e Pipeline Route Rev. R for the En . March 2010	bridge Northerr	i Gateway Project	
Legacy	Rei	route 🗌 Google	Earth Filename			
Occurrence Factor	1	Unconsolidated river	bed material expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of signification return period.	ant scour events correspond to h	igh runoff event	typically 25 to 200 y	ear
Vunerability Factor	0.1	70m wide channel.				
Mitigation Options	1.00E-03	HDD crossing propos	ed.			

Applied Mitgations St	andard Factor	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

1.67E-09

Frequency Loss of Containment	1.00E-06	FLOC/m	

Geoh	azard	Deta	il id	398	West of Par	rsnip River		
Category Source	Slide - shallo Geotechnica		e deep]	KP (Rev V) Start KP (Rev V) End	673.84	Feature	75
	Overall Geot			-		nbridge Northern	Gateway Project	
Legacy	🗌 Rei	route 🗌	Google Ea	orth Filename				
Occurrence Factor	0.1	Glaciolacus local loggin		ts, potentiall	y unstable. There	e have been cut st	ability issues along the	
Estimated Frequency	0.1	Occurrence	e considered	possible upo	n excavation of o	cuts. Frequency d	ifficult to assess.	
Vunerability Factor	0	Sloughing c	of soft soils i	n shallow cut	s, loss of contain	ment event not c	onsidered possible.	
Mitigation Options	1.00E+00							
Applied M	litgations						Standard F	actor
Mitigation Site-specific	1							

Frequency Loss of Containment	0.00E+00	FLOC/m	0.00E+00	

Geohazard Detail ID 399 West of Wichcika Creek								
Category Source	Geotechnica Overall Geot	·	rt on the P	ipeline Route	P (Rev V) Start KP (Rev V) End Rev. R for the Enb	682 688 ridge Northern	Feature Gateway Project	78
Legacy	🗌 Rer	oute 🗌	Google Ea	orth Filename				
Occurrence Factor	0.1			rain with mode e local logging		ow slides in cut	s. There have been cut	
Estimated Frequency	0.1	Occurrence of	considered	possible upor	n excavation of cut	s. Frequency d	ifficult to assess.	
Vunerability Factor	0	Sloughing of	soft soils i	n cuts, loss of	containment even	t not considere	ed possible.	
Mitigation Options	1.00E+00							
Applied N	litgations						Standard	Factor

Mitigation	1
Site-specific	

Frequency Loss of Containment	0.00E+00	FLOC/m	0.00E+00
-------------------------------	----------	--------	----------

Geoh	azard	Detail	ID 353	Tributary to alignment	Chuchinka	Creek near	
Category	Lateral Migra	ation		KP (Rev V) Start	689.8	Feature	82
Source	Geotechnica	l Report		KP (Rev V) End	700.8		
		echnical Report on Alberta to Kitimat		te Rev. R for the En	bridge Northern	Gateway Project	
Legacy	✓ Rer	oute 🗌 🛛 Goo	ogle Earth Filenan	ne			
Occurrence	0	Has been routed	to avoid hazard.				
Factor		Route situated of valley floor but is			inka Creek. Later	al migration may occur	on
Estimated Frequency	0	Has been routed	to avoid hazard.				
Vunerability Factor	0	Has been routed	to avoid hazard.				
Mitigation Options	1.00E+00						
Applied M	litgations					Standard Fa	actor
Mitigation Site-specific	1						

FLOC/m

0.00E+00

0.00E+00

Frequency Loss of Containment

Geohazard Detail

ID 400

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	689.8	Feature 81
Source	Geotechnica	l Report	KP (Rev V) End	700.8	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Er /arch 2010	bridge Northern	Gateway Project
Legacy	Rer	route 🗌 Google Ea	nrth Filename		
Occurrence Factor	0.1	Poorly drained wet tern stability issues along th	rain with moderate slopes. Sha e local logging roads	allow slides in cut	s. There have been cut
Estimated Frequency	0.1	Occurrence considered	possible upon excavation of c	uts. Frequency d	ifficult to assess.
Vunerability Factor	0	Sloughing of soft soils i	n shallow cuts, loss of contain	ment event not c	onsidered possible.
Mitigation Options	1.00E+00				
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

0.00E+00

Tributary to Chuchinka Creek

_					_	
Category	/ Avulsion		KP (Rev V) Start	692.06	Feature	82
Source	Geotechnica	l Report	KP (Rev V) End	692.64		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enl	bridge Northern	Gateway Project	
	brudernenn,	Alberta to Kitimat, be. I				
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1 Possible alluvial fan. Further checks on avulsion potential recommended. Note that fan is apparently being mined for gravel, mining activities may impact avulsion hazard.					
Estimated Frequency	0.01	Paritially vegetated far review recommended.	n with no visible former channel	s or indications o	of activity/frequency,	field
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E+00					
Applied M	itgations				Standard	Factor
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-06 FLOC/m

1.82E-09

Geoh	azard	Detail	ID 494	Tributary to	Chuchinka	Creek
Category Source	Lateral Migr Assessment	ation based on review of a	avai	KP (Rev V) Start KP (Rev V) End	705.66 705.86	Feature
Legacy	Rei	route 🗌 🛛 Goog	gle Earth Filen	ame		
Occurrence Factor	1	Meander scars and	d point bar de	position near crossing	g indicate previou	is lateral erosion.
Estimated Frequency	0.1	Recent point bar d	lepostion (unv	regetated) suggest mo	bbile stream.	
Vunerability Factor	0.001	15 m wide channe	l.			
Mitigation Options	1.00E-03					
Applied M	itgations					Standard Factor
Sag bends b	peyond long-te	erm hydrotechnical	design limits			0.001

Mitigation	1
wintigation	T
Site-specific	
Site-specific	

Frequency Loss of Containment	1.00E-07	FLOC/m	5.00E-10

Geohazard Detail	I
------------------	---

ID 401

2.00E-09

Category	Slide - shallo	w/moderate deep	KP (Rev V) Star	t 712.66	Feature	84
Source	Geotechnical	Report	KP (Rev V) End 713.16			
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the March 2010	Enbridge Northe	ern Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Moderately steep gulli reconnaissance.	ed slopes to east and west, in	nstabilities obser	rved during field	
Estimated Frequency	0.1	Occurs or immediate v expected.	ricinity of route, relatively hig	h frequency of s	hallow to moderate sli	ding is
Vunerability Factor	0.001					
Mitigation Options	1.00E-02	May require major gra	ding and drainage/groundwa	ater control.		

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Mitigation	10
specific	

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geoh	azard Detail	ID 354	Angusmac Creek			
Category	Lateral Migration		KP (Rev V) Start 713.16	Feature	86	
Source	Geotechnical Report		KP (Rev V) End 713.44			
	Overall Geotechnical Report o Bruderheim, Alberta to Kitima	•	ute Rev. R for the Enbridge Northern 0	Gateway Project		

Legacy	Rer	oute 🗌 Google Earth Filename
Occurrence Factor	1	Braided/meandering channel. Some subchannels and active gravel bar depostion/erosion. History of lateral erosion.
Estimated Frequency	1	Active bar depostion/erosion and history of lateral erosion indicate high frequency of lateral movement.
Vunerability Factor	0.001	15m wide channel.
Mitigation Options	1.00E-03	

	Applied Mitgations Sta	andard Factor	
S	Sag bends beyond long-term hydrotechnical design limits	0.001	

2.86E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
L		

Geohazard Detail	ID	473	Angusmac Creek

Category	Scour		KP (Rev V) Start	713.16	Feature	86
Source	Geotechnical Report		KP (Rev V) End	713.44		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northerr	n Gateway Project	
Legacy	🗌 Rer	route 🗌 Google E	arth Filename			
Occurrence Factor	1	Unconsolidated river l	bed material expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of signification return period.	nt scour events correspond to h	igh runoff event	ts typically 25 to 200 y	year
Vunerability Factor	0.001	15m wide channel.				
Mitigation Options	1.00E-03					

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
ite-specific	

2.86E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geo	hazard	Detail	ID
Geo	nazard	Detail	ID

Angusmac Creek West Valley Slopes

6.67E-09

Category	Slide - shallo	w/moderate deep	KP (Rev	V) Start	713.55	Feature	84
Source	Geotechnica	Report	KP (Rev	v V) End	713.9		
		echnical Report on the F Alberta to Kitimat, BC. N		for the Enb	ridge North	ern Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Moderately steep gulli reconnaissance.	ed slopes to east and	west, insta	bilities obse	erved during field	
Estimated Frequency	0.1	Occurs or immediate v expected.	icinity of route, relativ	vely high fr	equency of	shallow to moderate s	liding is
Vunerability Factor	0.001	Shallow sliding parallel	l to pipe.				
Mitigation Options	1.00E-02	May require major gra	ding and drainage/gro	oundwater	control.		

499

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Mitigation	10
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geohazard Detail ID 355 Crooked River				
Category	Lateral Migration	KP (Rev V) Start	720.88	Feature 87
Source	Geotechnical Report	KP (Rev V) End	721.36	
	Overall Geotechnical Report Bruderheim, Alberta to Kitim	on the Pipeline Route Rev. R for the Er at, BC. March 2010	bridge Northern	Gateway Project

Legacy	Rer	oute 🗌 Google Earth Filename
Occurrence	1	Meandering river on floodplain composed of fines and organics with many oxbow lakes. Extent of
Factor		lateral erosion assessed using LiDAR imagery.
Estimated	0.1	Easily erodable fine grained sediments and organics, expect relatively high frequency of lateral
Frequency		erosion.
Vunerability	0.001	30 m wide channel.
Factor		
Mitigation Options	1.00E-03	Bored crossing proposed. Regardless of method used, pipeline to be below depth of scour across vulnerable area.

Applied Mitgations	Standard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

Mitigation	1	
Site-specific		

2.08E-10

Frequency Loss of Containment	1.00E-07	FLOC/m
-------------------------------	----------	--------

Catagoria	Coordina (Coordina)		720.00	Fashing	07
Category	Scour	KP (Rev V) Start	720.88	Feature	87
Source	Geotechnical Report	KP (Rev V) End	721.36		
	Overall Geotechnical Report on the Pipeline Rou Bruderheim, Alberta to Kitimat, BC. March 2010		oridge Northern G	ateway Project	

Factor		
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
Vunerability Factor	0.001	30 m wide channel.
Mitigation Options	1.00E-03	Bored crossing proposed.

Applied Mitgations S	tandard Factor
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.08E-11

Geohazard Detail	ID 356	Muskeg River

Category	Lateral Migr	ation	КР (Rev V) Start	750.8	Feature 90
Source	Geotechnica	l Report	КР	(Rev V) End	750.9	
		echnical Report on th Alberta to Kitimat, B	•	v. R for the Enl	oridge Northeri	n Gateway Project
Legacy	Rer	route 🗌 Googl	e Earth Filename			
Occurrence Factor	1	valley. Channel is g		the west and r	nay be migratir	on. Low banks in a wide ng slowly toward the west.
Estimated Frequency	0.01	No obvious indicati	ons of high lateral m	obility suggest	s lower freque	ncy.
Vunerability Factor	0.001	30 m wide channel.				
Mitigation Options	1.00E-03	Bored crossing prop vulnerable area.	posed. Regardless of	method used,	pipeline to be	below depth of scour across

Applied Mitgations	Standard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Geohazard Detail	ID 475	Muskeg River

Category	Scour		КР (Rev V) Start	750.8	Feature	90
Source	Geotechnica	l Report	КР	(Rev V) End	750.9		,
			n the Pipeline Route Rev t, BC. March 2010	v. R for the Enl	oridge Northern	Gateway Project	
Legacy	Rer	oute 🗌 Go	ogle Earth Filename				
Occurrence Factor	1 Unconsolidated river bed material expected at crossing location.						
Estimated Frequency	0.01	Frequency of sig return period.	nificant scour events co	rrespond to hi	gh runoff events	s typically 25 to 200 v	year
Vunerability Factor	0.001	30m wide chann	iel.				
Mitigation Options	1.00E-03	Bored crossing p	proposed.				

Applied Mitgations St	andard Facto	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	1.00E-10

Geoh	azard	Detail ID	357	Salmon Rive	r		
Category Source		l Report	KP (Rev V) Start 765.44 Feature KP (Rev V) End 765.9 Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010				
Legacy Occurrence	Rer	_	arth Filename		moondor score L	lighly mobile river with	
Factor	1	frequent debris jams. I				ngniy mobile river with	
Estimated Frequency	1	Potential for meander	cutoff or cha	nnel reoccupation			
Vunerability Factor	0.01	40 m wide channel. Hi	gh mobility in	creases vulnerabil	ity.		
Mitigation Options	1.00E-03	Bored crossing propos vulnerable area.	ed. Regardles	s of method used,	pipeline to be be	elow depth of scour across	

Applied Mitgations St	tandard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

2.22E-08

Frequency Loss of Containment	1.00E-05	FLOC/m

Geoh	azard	Detail ID	476	Salmon Rive	r	
Category	Scour			KP (Rev V) Start	765.44	Feature91
Source	Geotechnica	l Report		KP (Rev V) End	765.9	
		technical Report on the I , Alberta to Kitimat, BC.			ridge Norther	n Gateway Project
Legacy	Re	route 🗌 Google E	arth Filena	me		
Occurrence Factor	1	Unconsolidated river b	oed materia	Il expected at crossing	g location.	
Estimated Frequency	0.01	Frequency of significat return period.	nt scour eve	ents correspond to hi	gh runoff even	ts typically 25 to 200 year
Vunerability Factor	0.001	35m wide channel.				
Mitigation Options	1.00E-03	Bored crossing propos	sed.			

Applied Mitgations S	tandard Factor	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001	

Mitigation	1	
Site-specific		

Frequency Loss of Containment	1.00E-08	FLOC/m	2.50E-11

Geohazard	Detail	ID
-----------	--------	----

4.00E-09

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	765.9	Feature	92
Source	Geotechnica	l Report	KP (Rev V) End	766.14		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enl March 2010	oridge Norther	n Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Evidence of shallow slid side	ding and/or groundwater pipinរ្	g and gully ero:	sion (incised creeks) o	on west
Estimated Frequency	1	Expected to be relative	ely frequent.			
Vunerability Factor	0.001	Shallow sliding parallel	to pipeline.			
Mitigation Options	1.00E-03	Requires major grading	g and drainage/groundwater co	ntrol.		

402

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Deta	ail id	523	Tributary to	Beaver L	ake
Category	Slide - shallo	w/modera	te deep		KP (Rev V) Start	782.38	Feature
Source	Assessment	based on re	view of avai		KP (Rev V) End	782.58	
Legacy	Rei	route 🗸	Google E	arth Filenam	e		
Occurrence Factor	0.1	Route cro	sses meande	r bend of tril	outrary to Beaver L	ake. Possible	shallow sliding in banks.
Estimated Frequency	0.1		-		problems based o and undercutting		DAR. The low-power stream is bilization.
unerability Factor	0.001	Sliding in	direction of p	pipeline.			
Mitigation Options	1.00E-03	Recomme	end reroute a	round mean	der within corridor	·.	
Applied M	itgations						Standard Facto
Reroute							0.001
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Geohazard Detail	D
------------------	---

403

Category	Slide - shallo	w/moderate deep	KP (R	ev V) Start	818.92	Feature
Source	Geotechnical	l Report	КР (Rev V) End	819.32	
		echnical Report on the P Alberta to Kitimat, BC. N		. R for the Ent	oridge North	ern Gateway Project
Legacy	Rer	oute 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Aerial review suggests stream. Glaciolacustrin	-	esult of banks	and slopes	being undercut by meandering
Estimated Frequency	0.1	Expected to be relative	ly frequent.			
Vunerability Factor	0.01	Potential for larger sca	le event increases	vulnerability.		
Mitigation Options	1.00E-03	May require major grad	ding and drainage/	/groundwater	r control.	

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

Category	Scour		KP (Rev V) Start 819.32	Feature
Source	Assessment	based on review of avai	KP (Rev V) End 819.46	
Legacy	Re	route 🗌 Google Earth	Filename	
currence Factor	1	Unconsolidated river bed n	naterial expected at crossing location.	
timated equency	0.01	Frequency of significant sco return period.	our events correspond to high runoff events	ents typically 25 to 200 ye
erability Factor	0.001	25m wide channel.		
itigation Options	1.00E-03	Bored crossing proposed.		

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001
--	-------

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geohazard	Detail ID
------------------	-----------

70

Category	Deep seated	slide	KI	P (Rev V) Start	824.3	Feature	94	
Source	Geotechnica	l Report	ŀ	(P (Rev V) End	824.6			
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rer	route 🗌 Google Ea	arth Filename					
Occurrence Factor	0.01	Deep-seated slides sou suggesting a more stab of area of sliding.		-				
Estimated Frequency	0.001	No deep-seated slides	on route, low	frequency of occ	urrence.			
Vunerability Factor	1	Slopes steeper than an	ngle of residual	friction.				
Mitigation Options	1.00E-03	HDD crossing proposed crest grading.	d (won't mitiga	te). Monitoring c	of stability con	ditions and major slo	pe and	

Applied MitgationsStandard FactorMonitoring of slope stability conditions0.1Major slope and crest grading0.01

ation	1	1
e-specific		

Frequency Loss of Containment	1.00E-08	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID 478 Stuart River
Category Source	Scour Assessment	KP (Rev V) Start824.76Featurebased on review of avaiKP (Rev V) End825.08
Legacy	Re	route Google Earth Filename
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
unerability Factor	0.1	200 m wide channel.
Mitigation Options	1.00E-03	HDD crossing proposed.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m

Geohazard	Detail 🗉
------------------	----------

D 71

Category	Deep seated	l slide	KP (Rev V) Star	t 825	Feature	94
Source	Geotechnica	l Report	KP (Rev V) En	d 825.5		
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the March 2010	Enbridge Nor	thern Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.01		ith of river crossing however ble geology. Requires further			
Estimated Frequency	0.001	No deep-seated slides	on route, low frequency of o	occurrence.		
Vunerability Factor	0.1	Low angle slide (near r	esidual angle of friction).			
Mitigation Options	1.00E-01	HDD crossing proposed crest grading.	d (won't mitigate). Monitorii	ng of stability	conditions and major slo	pe and

Applied Mitgations	Standard Factor
Monitoring of slope stability conditions	0.1

Mitigation	1	
Site-specific		

Frequency Loss of Containment 1.00E-07

1.82E-10

FLOC/m

Geohazard Detail ID

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	825.02	Feature 95
Source	Geotechnica	l Report	KP (Rev V) End	825.08	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the Enl March 2010	bridge Northerr	n Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filename		
Occurrence Factor	1	Moderately deep-seat front.	ed slide along lower valley wall	on west side of	river on lowest terrace
Estimated Frequency	1	Slide considered active	<u>.</u>		
Vunerability Factor	0.1	Would load sagbend/c	verbend interval for a trenched	l crossing.	
Mitigation Options	1.00E-04	HDD crossing proposed west side.	d.Trenchless crossing method to	o avoid shallow	to moderately deep slide on
Applied M	litgations				Standard Factor
Deep buria	l below slide				0.001

404

Mitigation	0.1	HDD expected to be significantly below area of potential sliding.
Site-specific		

Frequency Loss of Containment	
Frequency Loss of Containment	

1.00E-05 FLOC/m

2.86E-08

Category	Slide - shallo	w/modera	te deep]	KP (Rev V) Start	859.24	Feature	
Source					KP (Rev V) End	859.4		
Legacy	Re	route 🗸	Google Ea	orth Filenam	e			
ccurrence Factor	1	Moderate March 20		d slide on Ea	ast bank of Suther	land River identifie	ed from LiDAR imagery	
Estimated Frequency	1	Level of a	ctivity is unkr	own, assum	e slide is moving.			
nerability Factor	0.001							
Aitigation Options	1.00E-03	Possible r	eroute to the	north or sou	ith beyond extent	s of the slide.		
Applied M	litgations						Standard Fact	
Reroute							0.00	

	Scour		KP (Rev V) Start	859.4	Feature
Source	Assessment	based on review of avai	KP (Rev V) End	859.48	
Legacy	Re	route 🗌 Google Earth F	ilename		
ccurrence Factor	1	Unconsolidated river bed m	aterial expected at crossin	g location.	
stimated requency	0.01	Frequency of significant sco return period.	ur events correspond to h	igh runoff events	typically 25 to 200 y
nerability Factor	0.001	15 m wide channel.			

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Frequency Loss of Containment	1.00E-08	FLOC/m	1.00E-10
L			

Geoh	azard	Detail ID 515	Maxan Creek	
Category Source		ation based on review of avai	KP (Rev V) Start 951.2 KP (Rev V) End 951.58	Feature
Legacy	Re	route 🗌 Google Earth F	ilename	
Occurrence Factor	1	Highly sinous creek within be	oggy floodplain. No oxbows near crossing.	
Estimated Frequency	0.01	Easily erodable fine grained	sediments and organics, expect relatively h	igh lateral mobility.
Vunerability Factor	0.001	15 m wide channel.		
Mitigation Options	1.00E-03			
Applied M	litgations			Standard Factor
Sag bends l	peyond long-t	erm hydrotechnical design lim	its	0.001

Mitigation	1
Wittgation	-
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	3.33E-11

Geohazard Detail

405

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	977.34	Feature	98
Source	Geotechnica	l Report	KP (Rev V) End	977.96		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Er Aarch 2010	nbridge North	nern Gateway Project	
Legacy	Rei	route 🗌 Google Ea	nrth Filename			
Occurrence Factor	1	valley bottom. Parts of	ing small failures identified no east approach slope have gro im erosion in glaciolacustrine s	undwater blo	ow-off failures. Small fa	ilures on
Estimated Frequency	0.1	Expected to be relative	ly frequent.			
Vunerability Factor	0.001	Small failures parallel to	o pipeline.			
Mitigation Options	1.00E-03	Major grading and drai	nage/groundwater control.			

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Frequency Loss of Containment	1.00E-07	
-------------------------------	----------	--

FLOC/m

Geohazard Do	etail
--------------	-------

ID 546

7.14E-10

Category	Slide - shallo	w/moderate deep	KP (Rev V) Start	978.3	Feature
Source	Geotechnica	eotechnical Report KP (Rev V) End	978.44		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northerr	n Gateway Project
Legacy	Rer	route 🗌 Google Ea	Irth Filename		
Occurrence Factor	1	valley bottom. Parts of	ing small failures identified nor east approach slope have grou im erosion in glaciolacustrine s	ndwater blow-o	off failures. Small failures on
Estimated Frequency	0.1	Expected to be relative	ly frequent		
Vunerability Factor	0.001	Small failures parallel t	o pipeline.		
Mitigation Options	1.00E-03				

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Mitigation	1	. [1
te-specific			

1.00E-07	FLOC/m
	1.00E-07

Category	Lateral Migr	ation		KP (Rev V) Start	978.44	Feature	9
Source	Geotechnica	al Report		KP (Rev V) End	978.68		
		technical Report on th , Alberta to Kitimat, B	•		bridge Northern	Gateway Project	
Legacy	Re	route 🗌 🛛 Googl	e Earth Filena	ne			
Occurrence Factor	1	Moderate sized me scars near crossing.	andering creel	x, bar deposition/erc	osion evident, old	oxbows and meande	er
Estimated Frequency	0.1	Recent lateral move	ement.				
inerability Factor	0.001	15m wide channel.					

Applied Mitgations	Standard Factor
Sag bends beyond long-term hydrotechnical design limits	0.001

Mitigation	1	
willigation	1	
Site-specific		
site-specific		

Frequency Loss of Containment	1.00E-07	FLOC/m	5.00E-10

Geoh	azard	Detail ID	479	Klo Creek			
Category	Scour]	KP (Rev V) Start	978.44	Feature 97	
Source	Geotechnica	l Report		KP (Rev V) End 978.68			
		echnical Report on the P Alberta to Kitimat, BC. N			bridge Northerr	n Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	irth Filena	me			
Occurrence Factor	1	Unconsolidated river b	ed materia	al expected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of significan return period.	t scour eve	ents correspond to h	igh runoff event	ts typically 25 to 200 year	
Vunerability Factor	0.001	15m wide channel.					
Mitigation Options	1.00E-03						

Applied Mitgations St.	andard Factor	
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001	

Vitigation	1	
ite-specific		

6.67E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geohazard	Detail	ID	501
-----------	--------	----	-----

Klo Creek West valley slopes

Category	Slide - shallo	w/moderate deep	KP (Rev V) S	tart	978.68	Feature	98
Source	Geotechnica	l Report	KP (Rev V)	End	978.72		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for t March 2010	he En	bridge Nort	hern Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	arth Filename				
Occurrence Factor	1	valley bottom. Parts of	ing small failures identifie east approach slope have am erosion in glaciolacust	e grou	ndwater bl	ow-off failures. Small fai	ilures on
Estimated Frequency	0.1	Expect relatively freque	ent shallow sliding events	at loo	ation.		
Vunerability Factor	0.001	Small failures parallel t	o pipeline.				
Mitigation Options	1.00E-03	Major grading and drai	nage/groundwater contr	ol.			

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

1.54E-10

Frequency Loss of Containment	1.00E-07	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID 359 Buck Creek
Category	Lateral Migr	Tation KP (Rev V) Start 989.78 Feature
Source	Geotechnica	Il Report KP (Rev V) End 990.16
		echnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project , Alberta to Kitimat, BC. March 2010
Legacy	Re	route 🗌 Google Earth Filename
Occurrence Factor	1	The stream is meandering with lateral erosion evident. Several oxbows along the valley bottom near and west of the crossing.
Estimated Frequency	0.1	Recent lateral migration has occurred.
unerability Factor	0.001	15m wide channel.
Mitigation Options	1.00E-03	Bored crossing proposed. Regardless of method used, pipeline to be below depth of scour acro vulnerable area.

	Applied Mitgations St	andard Factor
٦	Trenchless Methods enter/exit outside extents of lateral migration	0.001

Mitigation	1
Site-specific	

3.33E-10

Frequency Loss of Containment	1.00E-07	FLOC/m	
-------------------------------	----------	--------	--

Geoh	azard	Detail ID	480 Buck Creek
Category	Scour		KP (Rev V) Start989.78Feature
Source	Geotechnica	l Report	KP (Rev V) End 990.16
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010
Legacy	Rer	route 🗌 Google Ea	Earth Filename
Occurrence Factor	1	Unconsolidated river b	bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significan return period.	nt scour events correspond to high runoff events typically 25 to 200 year
Vunerability Factor	0.001	15m wide channel.	
Mitigation Options	1.00E-03	Bored crossing propose	sed.

Applied Mitgations St	andard Facto	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment1.00E-08FLOC/m3.1	33E-11
--	--------

Geoh	azard	Detail ID 4	81 Owen Creek							
Category	Scour		KP (Rev V) Start	1005.2	Feature					
Source	Assessment	based on review of avai	KP (Rev V) End	1005.4						
Legacy	✓ Rer	route 🗌 Google Eart	h Filename							
Occurrence Factor	0		ow pertain to RevU. RevV cro material expected at crossing							
Estimated Frequency	0.01	Frequency of significant s return period.	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.							
Vunerability Factor	0.001	15m wide channel.								
Mitigation Options	1.00E-03	Bored crossing proposed.								

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	0.00E+00	FLOC/m

Geoh	azard	Detail ID 5	541	Owen Creek	East Approa	ach Slopes
Category	Slide - shalld	ow/moderate deep		KP (Rev V) Start	1006.58	Feature
Source	Assessment	based on SWAT field re		KP (Rev V) End	1006.7	
Legacy	Re Re	route 🗌 Google Eart	h Filenam	e		
Occurrence Factor	1	Field assessment noted e bedrock. Slopes 15 to 20				steep slopes with shallow
Estimated Frequency	0.01	No evidence of active slo	pe movem	ent.		
Vunerability Factor	0.001	Direction of potential slid	ling is para	llel to pipe direction	on.	
Mitigation Options	1.00E-03	For trench crossing grade crossing install pipe below				er controls. For trenchless
Applied M	-					Standard Factor
-	e and crest gra					0.1
Drainage ai	nd groundwat	er control				0.1

Frequency Loss of Containment	1.00E-08	FLOC/m	8.33E-11	

Surface water control

1

Mitigation Site-specific 0.1

Geoh	azard	Detail ID	323	West of Ow	en Creek			
Category	ry Deep seated slide KP (Rev V) Start 1006.7 Fea							
Source	Schwab, J.W	. 2011 and review of im		KP (Rev V) End	1007.1			
						mat, West Central British ement. September 2011.		
Legacy	✓ Rei	route 🔽 Google E	arth Filename					
Occurrence	0	RevV has been routed	south to avoid	d, legacy.				
Factor		Lake to Kitimat, West Prepared for Bulkley V 2011.	Hillslope and Fl Central British /alley Centre fo CTS\7000\VG0	uvial Processes A Columbia. or Natural Resour 7702 -Spectra WI	long the Proposed F ces Research & Mar .NG\Reference Publ	Pipeline Corridor, Burns nagement. September ications\Regional\2011 -		
Estimated Frequency	0.1	Level of activity unkno	own.					
/unerability Factor	0.1	Slope angle steeper th	aan residual an	gle of friction, ho	wever, route passes	s through crest of slide.		
Mitigation Options	1.00E-03	Reroute has been imp	lemented					
Applied N	litgations					Standard Facto		
Reroute						0.001		
Mitigation Site-specific	1							
		_						
	Frequency Los	s of Containment	0.00E+00	FLOC/m	0.00E+00			

Geoh	azard	Detail ID 532 Owen Creek
Category Source	Lateral Migra	AtionKP (Rev V) Start1006.7Featurebased on SWAT field reKP (Rev V) End1006.72
Legacy	Rer	oute 🗌 Google Earth Filename
Occurrence Factor	1	Minor bank erosion, no scour. Active floodplain about 30 m wide with meandering channel. Stream banks about 1.5 m high.
Estimated Frequency	0.01	Moss growth on floodplain rocks suggest relatively infrequent lateral erosion events.
Vunerability Factor	0.001	Small stream (Channel 15 m wide x 1.5 m deep with pebbles and cobbles with some boulders to 0.8 m bed).
Mitigation Options	1.00E-03	Deep burial across floodplain for trench crossing. Proposed bored crossing to extend below/beyond potential erosion limits.
Applied M	itgations	Standard Factor
Sag bends b	beyond long-te	erm hydrotechnical design limits 0.001

Mitigation	1
Site-specific	

5.01E-10

Frequency Loss of Containment	1.00E-08	FLOC/m

Geon	azard	Deta	AII ID 54	3 Owen Cree	k West Appro	oach Slopes
Category	Slide - shallo	w/modera	te deep	KP (Rev V) Start	1006.72	Feature
Source	Assessment	based on SN	WAT field re	KP (Rev V) End	1006.8	
Legacy	Re Re	route 🗌	Google Earth	Filename		
Occurrence Factor	0.1					steep slopes with shallow pes 15 to 20 m high at 25°.
Estimated Frequency	0.01	No evider	nce of active slope	e movement.		
/unerability Factor	0.001	Direction	of potential slidin	ng is parallel to pipe direct	tion.	
Mitigation Options	1.00E-02	Consider	grading and groui	nd/surface water controls	as required.	
Applied M	_					Standard Facto
	e and crest gra					0.1
Drainage ar	nd groundwat					0.1

Mitigation	1
-specific	

1.25E-10

Frequency Loss of Containment	1.00E-08	FLOC/m
Frequency Loss of Containment	1.00E-08	FLOC/m

Category	Slide - shallo	ow/moderate deep		KP (Rev V) Start 1012.74 Feature			
Source	Assessment	based on SWAT field re		KP (Rev V) End	1012.78		
Legacy	Re	route 🗌 Google E	arth Filenam	ne			
Occurrence Factor	0.1	gravity processess. Re	are thought quires furth	however to be de er investigation. Tr	rived from erosion aces of old shallov	m downstream of al rather than sediment- v slide activity noted in possible with no defined	
Estimated Frequency	0.01	No evidence of active s	slope moven	nent.			
unerability Factor	0.001	Direction of potential s	sliding is par	allel to pipe direct	ion.		
Mitigation Options	1.00E-03	Grading and groundwa	iter/surface	water control. Dee	ep burial.		

Applied Mitgations

Standard Factor

Minor slope	Minor slope and crest grading						
Drainage and	Drainage and groundwater control						
Surface water control							
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-09	FLOC/m	2.50E-11

Category	Scour			KP (Rev	V) Start	1012.78	Feature
Source	ource Assessment based		ased on review of avai		v V) End	1012.8	
Legacy	✓ Re	route 🗸	Google Earth F	ilename			
currence Factor	1	Unconsoli	idated river bed m	aterial expected	d at crossir	g location.	
timated equency	0.01	Frequenc return pe		ur events corres	spond to h	igh runoff events	typically 25 to 200 y
erability Factor	0.001	10m wide	channel.				
itigation	1.00E-03						

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Frequency Loss of Containment	1.00E-08	FLOC/m	2.00E-10

Geoh	azard	Detail ID	533	Fenton Creek	
Category	Lateral Migr	ation		KP (Rev V) Start 1012.78	Feature
Source	Assessment	based on SWAT field re		KP (Rev V) End 1012.8	
Legacy	Rei	route 🗌 🛛 Google E	arth Filenar	ne	
Occurrence Factor	1			channel 110 m downstream of cros nent but is assumed to occur for pur	0
Estimated Frequency	0.1	Major lateral erosion highly mobile.	event assum	ned to coincide with 1:10 storm. Bra	ided channels tend to be
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-03	Set sagbends back int	to approach	slopes to protect against channel e	rosion.
Applied M					Standard Factor
Sag bends l	beyond long-te	erm hydrotechnical desi	ign limits		0.001

Sag bends beyond long-term hydrotechnical design limits

Frequency Loss of Containment	1.00E-07	FLOC/m	5.01E-09

Geon	azard	Deta	ID 542	Fenton Cre	ek West App	roach Slope
Category	Slide - shallo	w/moderate	deep	KP (Rev V) Start	1012.8	Feature
Source	Assessment	based on SWAT field re		KP (Rev V) End	1012.86	
Legacy	Rei	route 🗌	Google Earth Fi	lename		
Occurrence Factor	0.1			tivity noted in tributary no defined occurrence.		d east) approach slopes.
Estimated Frequency	0.01	No evidence	e of active slope r	novement.		
unerability Factor	0.001	Direction of	potential sliding	is parallel to pipe direct	ion.	
Mitigation Options	1.00E-03	Grading, gro	ound and surface	water control. Set pipe	below rupture sur	ace.
Applied M	itgations					Standard Facto

Minor slope	Minor slope and crest grading						
Drainage an	Drainage and groundwater control						
Surface water control							
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-09	FLOC/m	1.67E-11

Category	Slide - shallo	ow/moderate deep	KP (Rev V) St	art 1018.36	Feature
Source	Assessment	based on SWAT field re	KP (Rev V) End 1018.4		
Legacy	🗌 Re	route 🗌 🛛 Google E	arth Filename		
ccurrence Factor	1	Field assessment notes slopes.	d evidence of shallow to m	oderate depth slumpir	ng on moderately steep
stimated Frequency	0.01	No evidence of active	slope movement.		
nerability Factor	0.001	Direction of potential	sliding would be parallel to	pipe.	
	1.00E-03		nd surface water control.		

- -

Applied Mitgations

Standard Factor

Minor slope	and crest gradir	ng	0.1
Drainage ar	d groundwater o	control	0.1
Surface wat	er control		0.1
Mitigation Site-specific	1		

Frequency Loss of Containment	1.00E-08	FLOC/m	2.50E-10

Catagory	Latoral Migr	ation			KP (Rev V) Start	1018.4	Feature
Category	Lateral Migr						reature
Source	Assessment	t based on SWAT field re			KP (Rev V) End	1018.42	
Legacy	Rei	route 🗌	Google Ea	arth Filename	2		
Occurrence Factor	1	-		m wide and 1 on considered		el elevation. Under	cutting noted on outside
Estimated Frequency	0.1	Significan	t channel mig	gration expec	ted to correspond	d with 1:10 year p	recipitation event.
unerability Factor	0.001	Small stre	am (Channel	4 to 5 m wide	e x 1 m deep).		
Vitigation Options	1.00E-03	Grade ea	st slope to set	tback sagbend	d.		
Applied M	itgations						Standard Fact
••	0						

Frequency Loss of Containment	1.00E-07	FLOC/m	5.01E-09

Geohazard	Detail
-----------	--------

ID

406

Category	Slide - shallo	w/moderate deep	KP	P (Rev V) Start	1021	Feature	100
Source	Geotechnical	l Report	К	(Rev V) End	1022		
		echnical Report on the Alberta to Kitimat, BC.		Rev. R for the Ent	oridge Northerr	n Gateway Project	
Legacy	✔ Rer	route 🗌 Google	Earth Filename				
Occurrence Factor	0	Legacy record, route East valley wall mode			-		
Estimated Frequency	0	No indicatation of dir	rect occurrence o	n route, expecte	d to be modera	ately frequent.	
Vunerability Factor	0	Vulnerability expecte	d to be higher th	an default value			
Mitigation Options	1.00E-03	May require major gr	rading and draina	age/groundwater	r control.		

Applied MitgationsStandard FactorMajor slope and crest grading0.01Drainage and groundwater control0.1

Mitigation	1
Site-specific	

Frequency Loss of Containment	0.00E+00	FLOC/m
-------------------------------	----------	--------

Category	Slide - shallo	w/moderate deep		KP (Rev V) Start 1024.36	Feature		
Source	Source Assessment based on SWAT field re			KP (Rev V) End 1024.66			
Legacy	Rer	route 🗌 🛛 Google I	arth Filename	2			
ccurrence Factor	1	scars on slope with no	evidence of re earuring about	vith rocky soil. Field assessment no ecent movement. North of the rou 2 X 2.5m deep by 10m wide with ed possible.	ute (20m) is a more well		
stimated requency	0.01	No evidence of recent	t movement.				
nerability Factor	0.001	Direction of potential	sliding is parel	lel to pipeline.			
litigation Options	1.00E-04		-	undwater control. Route has been of the proposed crossing towards			

Major slop	e and crest grading	0.01
Drainage a	nd groundwater control	0.1
Surface wa	er control	0.1
Mitigation Site-specific	1	

Frequency Loss of Containment	1.00E-09	FLOC/m	3.33E-12

Geoh	azard	Detail ID 483 Lamprey Creek
Category Source		KP (Rev V) Start1024.66Featurebased on review of avaiKP (Rev V) End1024.84
Legacy	Rei	route Google Earth Filename
Occurrence Factor	1	Cobbles and boulders to 0.3 m in channel with sand and fine gravel bar deposits. Some bank erosion. Floodplain is elevated about 2 m above channel, and about 2.6 m above deepest pool scour.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
/unerability Factor	0.001	Small stream (channel at crossing about 8 m wide)
Mitigation Options	1.00E-03	Burial below depth of scour.
Applied M	litgations	Standard Fact

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m

0.001

Estimated 0.1 Significant lateral erosion events expected to correspond to 1:10 storm. Frequency 0.01 Significant lateral erosion events expected to correspond to 1:10 storm. /unerability 0.001 Small stream (channel at crossing about 8 m wide) Factor 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to proteet	Legacy Reroute Google Earth Filename Occurrence 1 100 m active flood plain with low elevation terrace deposits along margins. Floodplain is elevated about 2 m above water elevation (September, 2012) with several old channels incised to 1.5 m deep. Some bank erosion. Estimated 0.1 Significant lateral erosion events expected to correspond to 1:10 storm. /unerability 0.001 Small stream (channel at crossing about 8 m wide)	Category	Lateral Migr	ration			KP (Re	v V) Start	1024.66		Feature	
Dccurrence 1 100 m active flood plain with low elevation terrace deposits along margins. Floodplain is elevated about 2 m above water elevation (September, 2012) with several old channels incise to 1.5 m deep. Some bank erosion. Estimated 0.1 Significant lateral erosion events expected to correspond to 1:10 storm. Frequency 0.001 Small stream (channel at crossing about 8 m wide) Factor 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protein	Dccurrence 1 100 m active flood plain with low elevation terrace deposits along margins. Floodplain is elevated about 2 m above water elevation (September, 2012) with several old channels incised to 1.5 m deep. Some bank erosion. Estimated 0.1 Significant lateral erosion events expected to correspond to 1:10 storm. Frequency 0.001 Small stream (channel at crossing about 8 m wide) Factor 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protect	Source	Assessment	based on SV		KP (R	ev V) End	1024.84				
Factor elevated about 2 m above water elevation (September, 2012) with several old channels incise to 1.5 m deep. Some bank erosion. Estimated 0.1 Frequency Significant lateral erosion events expected to correspond to 1:10 storm. Inerability 0.001 Fractor Small stream (channel at crossing about 8 m wide) Factor 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to proteet	Factor elevated about 2 m above water elevation (September, 2012) with several old channels incised to 1.5 m deep. Some bank erosion. Estimated 0.1 Frequency Significant lateral erosion events expected to correspond to 1:10 storm. Inerability 0.001 Fractor Small stream (channel at crossing about 8 m wide) Factor 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protect	Legacy	Rei	route 🗌	Google Ea	arth Filena	ame					
Frequency 0.001 Inerability 0.001 Factor Small stream (channel at crossing about 8 m wide) Factor Small stream (channel at crossing about 8 m wide) Vitigation 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to proteet	Frequency 0.001 unerability 0.001 Factor Small stream (channel at crossing about 8 m wide) Factor Small stream (channel at crossing about 8 m wide) Vitigation 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protect		1	elevated a	bout 2 m ab	ove water	elevation					
Factor Aitigation 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protect	Factor Aitigation 1.00E-03 Set sagbends into approach slopes and deep burial required across active floodplain to protect		0.1	Significant	lateral erosi	on events	expected	to corresp	oond to 1:1	0 storm.		
		-	0.001	Small strea	am (channel	at crossin	g about 8	m wide)				
Options pipe against possible channel scour and lateral erosion.		-	1.00E-03	-				•	•	oss active f	loodplain to p	protect

Frequency Loss of Containment	1.00E-07	FLOC/m	

• •			r
Geohazaro	1 Notail	חו	107
UCUNAZAN		שו	407

Cedric Creek valley slopes

Category	Slide - shallo	ow/moderate deep	KP (Rev V)	Start	1028.3	Feature	101	
Source	Geotechnical	l Report	eport KP (Rev V) End 1029.1					
		echnical Report on the F , Alberta to Kitimat, BC. N	Pipeline Route Rev. R for March 2010	the Enb	ridge North	ern Gateway Project		
Legacy	Rer	route 🗌 Google Ea	arth Filename					
Occurrence Factor	0	Moderately deep valle	nove furhter to the south y with steep slopes. Pote th no defined occurrence	ential fo	r shallow sli		le	
Estimated Frequency	0	No indication of direct	occurrence on route. Ex	pected	to be mode	rately frequent.		
Vunerability Factor	0							
Mitigation Options	1.00E-03	May require major gra	ding and drainage/grour	ndwater	control.			

Applied Mitgations	Standard Factor
Major slope and crest grading	0.01
Drainage and groundwater control	0.1

Mitigation	1
te-specific	

Category	Lateral Migr	ration		KP (Rev V) Start	1028.45	Feature	102
Source	Geotechnica	al Report		KP (Rev V) End	1028.55		
		technical Report on , Alberta to Kitimat		ute Rev. R for the Er)	nbridge Northern G	Gateway Project	
Legacy	✔ Re	route 🗌 🛛 Goo	ogle Earth Filena	me			
Occurrence Factor	0			er to the south. Com not show evidence c			
Estimated Frequency	0	Forested channel	l with small cree	k, no evidence of pr	evious lateral eros	on.	
unerability Factor	0	5m wide channel	l.				
Mitigation Options	1.00E-03						

Applied Mitgations Sta	indard Factor	•
Sag bends beyond long-term hydrotechnical design limits	0.001	

Mitigation	1	
willigation	1	
Site-specific		
site-specific		

Frequency Loss of Containment	0.00E+00	FLOC/m	0.00E+00

Geohazard Detail	ID 485	Cedric Creek

Category	Scour		KP (Rev	v V) Start	1028.45	Feature	102		
Source	Geotechnica	l Report	KP (Re	KP (Rev V) End 1028.55					
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010								
Legacy	✔ Rer	route 🗌 Google Ea	arth Filename						
Occurrence Factor	0	Legacy record, route m Unconsolidated river b			-	ertain to RevU.			
Estimated Frequency	0	Frequency of significar return period.	nt scour events corre	spond to hi	gh runoff ever	nts typically 25 to 200 y	year		
Vunerability Factor	0	10m wide channel.							
Mitigation Options	1.00E-03								

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	0.00E+00	FLOC/m	

Geoh	azard	Deta	il id	538	Cedric	Creek			
Category Source	Scour Assessment	based on SW	VAT field re		KP (Rev V KP (Rev ^v		32.72 32.74	Feature	
Legacy	Rei	route 🗌	Google Ea	rth Filenan	ne			 	
Occurrence Factor	0.1	deep with	sment carrie cobbles and y stream, sign	small bould	lers to 0.3 r	n. Small am	-		m
Estimated Frequency	0.01								
/unerability Factor	0.001	Small strea	am.						
Mitigation Options	1.00E-03								
Applied M	litgations							Standar	d Facto
Pipeline be	low maximum	predicted s	cour depth fc	or 1:100 or	1:200 peak	flows			0.001

Frequency Loss of Containment	1.00E-09	FLOC/m	

5.00E-11

209

Geohazard D	etail
-------------	-------

ID 408

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	1035.1	Feature	103
Source	Geotechnica	Il Report	KP (Rev V) End	1038.1		
		technical Report on the I , Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge Nort	hern Gateway Project	
Legacy	✓ Rer	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	0	Shallow soils on mode	ideslopes, crossing further sout erately steep, bedrock-controlleng along route). Considered cre	d slopes (po	tential for shallow to	
Estimated Frequency	0.1	No indication of direct	t occurrence on route. Expected	l to be mode	erately frequent.	
Vunerability Factor	0.01	Sliding direction is acro	oss pipeline.			
Mitigation Options	1.00E-03	May require major gra	ading and drainage/groundwate	er control.		

rd Factor	tgations Star
0.1	d groundwater control
0.01	and crest grading
	and crest grading

Mitigation	1
te-specific	

Frequency Loss of Containment	
-------------------------------	--

0.00E+00 FLOC/m

Geoh	azard	Detail ID 484 Morice River
Category	Scour	KP (Rev V) Start1043.06Feature
Source	Assessment	based on review of avai KP (Rev V) End 1043.42
Legacy	Re	eroute 🗌 Google Earth Filename
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
unerability Factor	0.1	70m wide channel.
Mitigation Options	1.00E-03	HDD crossing proposed.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

2.50E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
L		

Category	Lateral Mig	ration	KP (Rev V) Start 1043.06	Feature
Source	Assessment	based on review of avai	KP (Rev V) End 1043.42	
Legacy	Re	route 🗌 Google Earth	h Filename	
Occurrence Factor	1	Meandering river with aba	andoned channels.	
Estimated Frequency	0.01	Expected to correspond w	vith major storm/flooding event.	
/unerability Factor	0.1	Larger stream (70m acros	s)	
Mitigation Options	1.00E-03	Set HDD limits beyond ext	tents of lateral erosion.	
Applied M	litgations			Standard Factor
Trenchless	Methods ente	er/exit outside extents of lat	eral migration	0.001

Frequency Loss of Containment	1.00E-06	FLOC/m	2.78E-09

Geohazard Detail	ID 9	Crystal Creek

Category	Avulsion		КР	(Rev V) Start	1049	Feature	105
Source	Geotechnical Report		КР	የ (Rev V) End	1049.36		
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010				
Legacy	🗌 Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Channel loses confinement as it enters the low angle valley bottom of Gosnell Creek. Braided channel with frequent subchannels indicating smaller (within ~100 m of main channel) lateral avulsion events. Further checks on larger, lateral-extent avulsion potential is recommended.					
Estimated Frequency	0.1	Active subchannels and reactivation. Documen			indicating frequer	nt abandonment and	d
Vunerability Factor	0.01	Large stream 15 m wid	le.				
Mitigation Options	1.00E-03	Bored crossing propose	ed.				

Applied Mitgations St		andard Factor	
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001		

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	
-------------------------------	----------	--

4.00E-09

FLOC/m

Geohazard Detail	ID 269	Crystal Creek

Category	Debris Flow		KP (Rev V)	Start	1049	Feature	106
Source	Geotechnica	l Report	KP (Rev V)	End	1049.36		
		echnical Report or Alberta to Kitimat	n the Pipeline Route Rev. R for t, BC. March 2010	the En	bridge Northern	Gateway Project	
Legacy	Re	route 🗌 🛛 Goo	ogle Earth Filename				
Occurrence Factor	1	sediment supply	litions include: gentle to moder and large tributary area. Scree by Schwab and Geertsema as b	ning c	riteria is only par	tially met however	
Estimated Frequency	0.1	Non-vegetated a	active channel suggests relative	ly freq	uent debris flow	events.	
Vunerability Factor	0.01		osion is expected based on an a ty of the proposed route.	approx	kimate channel g	radient of 3° in the	
Mitigation Options	1.00E-03	Bored crossing p	roposed.				

Applied Mitgations	Standard Factor
Bored crossing	0.001

Mitigation	1
te-specific	

2.78E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

'0 | Tribu

Category	Debris Flow		KP (Rev V) Start 1055.02 Feature					
Source	Geotechnica	al Report	KP (Rev V) End 1055.1					
		technical Report on the P , Alberta to Kitimat, BC. N		ev. R for the En	bridge Northern	Gateway Project		
Legacy	Re Re	route 🗌 Google Ea	arth Filename					
Occurrence Factor	0.1	Headwater conditions shallow sliding and sed screening criteria.					r	
Estimated Frequency	0.01	Vegetated channel wit	hout indication	of recent debri	s flows, field che	eck recommended.		
Vunerability Factor	0.01	Deposition or erosion i immediate vicinity of tl			kimate channel g	radient of 7° in the		
Mitigation Options	1.00E-02	Deep burial.						
Applied M	itgations					Standar	d Factor	
Deep burial							0.01	
Mitigation Site-specific	1							

FLOC/m

1.00E-09

Frequency Loss of Containment1.00E-07

71 Tribu

Category	Debris Flow] KI	P (Rev V) Start	.057.34	Feature	107
Source	Geotechnica	l Report	KP (Rev V) End 1057.72				
		echnical Report on the P Alberta to Kitimat, BC. N	•	Rev. R for the Enbri	dge Northern (Gateway Project	
Legacy	Rer	route 🗌 🛛 Google Ea	arth Filename				
Occurrence Factor	0.1	Headwater conditions shallow sliding and sed screening criteria.					
Estimated Frequency	0.01	Vegetated channel with	hout indication	of recent debris flo	ows, field chec	k recommended.	
Vunerability Factor	0.01	Deposition or erosion i approximate channel g		-		-	an
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Standard	Factor
Deep burial							0.01
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-07
-------------------------------	----------

FLOC/m

2.50E-10

Category	Debris Flow		К	P (Rev V) Start	1058.24	Feature	2
Source	Geotechnica	l Report					
		echnical Report on the F Alberta to Kitimat, BC. N	•	Rev. R for the E	nbridge Northerr	n Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	Headwater conditions shallow sliding and sec screening criteria.					
Estimated Frequency	0.01	Vegetated channel wit	hout indication	n of recent debi	ris flows, field che	eck recommended	•
Vunerability Factor	0.01	Deposition or erosion i an approximate chann					an with
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Stan	dard Factor
Deep burial							0.01
Mitigation Site-specific	1						

FLOC/m

6.67E-10

1.00E-07 Frequency Loss of Containment

.73 **Tri**

Tributary to Gosnell Creek

Category	Debris Flow		К	P (Rev V) Start	1059.6	Feature
Source	Geotechnica	l Report	ŀ	(P (Rev V) End	1060	
		cechnical Report on Alberta to Kitimat	n the Pipeline Route I , BC. March 2010	Rev. R for the Enl	oridge Northern G	Gateway Project
Legacy	Re	route 🗌 🛛 Goo	ogle Earth Filename			
Occurrence Factor	0.01	erosion and sedin	itions include: steep ment accumulaltion. screening criteria onl	Significant catch		ls with potential for located near/beyond
Estimated Frequency	0.01	-	el without indicatior s, field check recomr		flows. Crossing lo	ocated significant distance
Vunerability Factor	0.01		osion is expected alo nnel gradient of 5° ir			portion of the fan with an eline.
Mitigation Options	1.00E-02					
Applied M	itgations					Standard Factor
Deep burial						0.01
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-08 FLOC/m

2.00E-11

Geohazard	Detail
-----------	--------

Category	Avulsion		KP (Rev V) Start	1061.82	Feature
Source	Geotechnical Report		KP (Rev V) End	1062	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the Enl March 2010	bridge Northern	Gateway Project
Legacy	Rer	route 🗌 Google E	arth Filename		
Occurrence Factor	0.01		oproximately 200 m upstream of ossibly above fan. Partial legacy		
Estimated Frequency	0.001	Possible aluvuial fan, f	field check required.		
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E+00				
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

Frequency Loss of Containment

1.00E-08

FLOC/m

5.55E-11

Geoh	azard	Deta	ail id	361	Gosnell Cre	eek		
Category	Lateral Migr	ation			KP (Rev V) Start	1063.76	Feature	108
Source	Geotechnical Report				KP (Rev V) End	1064.08		
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rei	route	Google Ea	arth Filenan	ne			
Occurrence Factor	1	Braided ch channels.	nannel with a	active bar de	postion/erosion a	and relocation acro	oss floodplain. Abandon	ed
Estimated Frequency	0.1	Expect fre	quent chann	nel switching	and lateral move	ment across flood	plain.	
/unerability Factor	0.001	20 m wide	channel.					
Mitigation Options	1.00E-03	Bored cros		ed. Regardle	ess of method use	d, pipeline to be be	elow depth of scour acr	OSS
	itentions	vulnerable	e area.				Standard F	_

Trend	chless Methods enter/exit outside extents of lateral migration	0.001

2.50E-10

Frequency Loss of Containment	1.00E-07	FLOC/m
Frequency Loss of Containment	1.00E-07	FLOC/m
		. · ·

Geoh	azard	Detail ID 486 Gosnell Creek						
Category	Scour	KP (Rev V) Start 1063.76 Feature 108						
Source	Geotechnica	al Report KP (Rev V) End 1064.08						
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rei	route Google Earth Filename						
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.						
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.						
Vunerability Factor	0.001	20 m wide channel.						
Mitigation Options	1.00E-03	Bored crossing proposed.						

Applied Mitgations S	tandard Facto	or
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.50E-11

Tributary to Burnie River Fan

Category	Avulsion		KP (Rev V) Start	1071.06	Feature	109
Source			KP (Rev V) End	1072.06		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1		ion of well defined forested fa ion of fan where it appears to			
Estimated Frequency	0.01	Heavily forested fan with no visible former channels or indications of activity/frequency, field review recommended. Channel occupies center portion of fan.				
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Deep cover recomment	ded. Debris flow potential on f	an may also nece	ssitate deep cover.	

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

1.00E-10

Frequency Loss of Containment	1.00E-07	FLOC/m
-------------------------------	----------	--------

Tributary to Burnie River Fan

Category	Debris Flow		KP (Rev V) Start 10	71.06	Feature	110
Source	Geotechnica	l Report	KP (Rev	V) End 10	1072.06	L	
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	0.1	Headwater conditions shallow sliding and sec screening criteria.					r
Estimated Frequency	0.01	Vegetated channel wit from steep slopes, field			ws. Crossing loo	cated significant d	istance
Vunerability Factor	0.01	Deposition or erosion i an approximate chann					with
Mitigation Options	1.00E-02						
Applied M	itgations	L				Standar	d Factor
Deep burial							0.01
Mitigation Site-specific	1						

Frequency Loss of Containment

1.00E-07

FLOC/m

1.00E-10

Geoh	azard	Detail 10	409 East approa River valley	-	Burnie and Clo	re
Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	1075.2	Feature	112
Source	Geotechnica	al Report	KP (Rev V) End	1075.65		
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010					
Legacy	Re Re	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	0.1	Possible shallow slide	in colluvium or till to north of r	route.		
Estimated Frequency	0.01	No indication of direct	t occurrence on route.			
Vunerability Factor	0.01	Vulnerability expected	d to to be higher than default v	alue.		
Mitigation Options	1.00E-03	Bored crossing propos	sed. May require major grading	g and drainage/gro	oundwater control.	

Applied Mitgations	Standard Factor
Major slope and crest grading	0.01
Drainage and groundwater control	0.1

litigation	1	1
ingation	T	1
e-specific		
s-specific		

	Frequency Loss of Containment	1.00E-08	FLOC/m	2.22E-11
--	-------------------------------	----------	--------	----------

Category	Scour		KP (Rev V) Start 1076.3	Feature
Source	Assessment	based on review of avai	KP (Rev V) End 1076.56	
Legacy	Re	route 🗌 Google Earth	n Filename	
currence Factor	1	Unconsolidated river bed r	material expected at crossing location.	
stimated requency	0.01	Frequency of significant sc return period.	cour events correspond to high runoff event	s typically 25 to 200 ye
nerability Factor	0.001	20 m wide channel.		
Aitigation Options	1.00E-03			

Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

3.33E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geoh	azard	Detail ID 526	Tributary to Burnie	e River
Category Source	Lateral Migr Assessment	ration based on review of avai	KP (Rev V) Start 1076.3 KP (Rev V) End 1076.56	
Legacy	Re Re	route 🗌 Google Earth Fi	lename	
Occurrence Factor	1	Braided channel.		
Estimated Frequency	0.01	Non-vegetated gravel bars.		
Vunerability Factor	0.001	20 m wide channel.		
Mitigation Options	1.00E-03			
Applied M	itgations			Standard Factor
Sag bends b	beyond long-to	erm hydrotechnical design limi	ts	0.001

Mitigation	1
0	
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	4.00E-11

Geoh	azard	Detail ID 362 Clore River					
Category	Lateral Migr	KP (Rev V) Start1077.4Feature11					
Source	Geotechnica	Il Report KP (Rev V) End 1077.94					
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Rer	route 🗌 Google Earth Filename					
Occurrence	1	Braided channel with active bar depostion/erosion and relocation across floodplain. Abandoned					
Factor		channels. Active migration across wide area.					
Estimated Frequency	1	Expect frequent channel switching and lateral movement across floodplain.					
Vunerability Factor	1	40 m wide channel, deep flow during floods.					
Mitigation Options	1.00E-04	Trenchless crossing proposed. Regardless of method used, pipeline to be below depth of scour across vulnerable area.					
C prioris		Crossing to be set back to account for conceivable lateral migration. A reroute to the south may provide feasible aerial or trenched crossing methods.					

Standard Factor
0.001
0.001
-

Mitigation	100	FLOC calculated assuming either a trenchless method outside extents of lateral migration or a
Site-specific		reroute south.

1.00E-04

FLOC/m

1.85E-07

Geoh	azard	Det	ail ID	487	Clore Ri	ver				
Category	Scour				KP (Rev V) S	Start	1077.4		Feature	114
Source	Geotechnica	echnical Report			KP (Rev V)	End	1077.94			
			eport on the Kitimat, BC.		oute Rev. R for t O	the Enl	oridge Northe	rn Gateway	y Project	
Legacy	Re	route 🗌	Google E	arth Filena	ame					
Occurrence Factor	1	Unconso	lidated river l	bed materi	al expected at o	crossin	g location.			
Estimated Frequency	0.01	Frequence return pe		nt scour ev	ents correspon	nd to hi	gh runoff eve	nts typically	y 25 to 200 y	year
Vunerability Factor	0.1	40 m wid	e channel, de	eep flow du	uring floods.					
Mitigation Options	1.00E-03	Trenchle	ss crossing pr	oposed.						

Applied Mitgations	Sta	andard Factor	•
Trenchless methods wit	n depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	1.85E-09

Geoh	azard	Deta	nil Id	235	Clore Tunne	el - East Port	al
Category Source	Avalanche Bear Enterpr	rises Penort]	KP (Rev V) Start KP (Rev V) End	1077.95	Feature
Legacy		route	Google Ea	arth Filena		1078.55	
Occurrence	0.01	Avalanche	track within	gully 100 r	n north and paralle	l to pipeline. Stee	p forested terrain with
Factor		high snow		in confines			Avalanche expert report
Estimated Frequency	0.001	Forested a	long route, f	requency o	of large avalanche e	xpected to be lov	V.
Vunerability Factor	0.1	Possible tr	ansport zone	e - 25-30°			
Mitigation Options	1.00E+00						
Applied M	itgations						Standard Factor
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

1.67E-09

Geohazard	Detail
-----------	---------------

Category	Rockfall		KP (Rev V) S	Start	1083.78	Feature	118			
Source	Geotechnica	Il Report KP (Rev V) End 10								
		technical Report on the P , Alberta to Kitimat, BC. N	•	the Enbi	idge Northern	Gateway Project				
Legacy	Re	route 🗌 Google Ea	arth Filename							
Occurrence	0.01		oes near tunnel portal. V							
Factor			the south. Location of portal relative to rockfall hazard needs to be checked but is assumed to be below rock fall shadow.							
Estimated	0.01		fall upslope but not cros	sing rou	te. Location of	portal relative to rockf	all			
Frequency		hazard needs to be che	cked.							
Vunerability	0.01	-	approximately 17° in the	e immed	iate vicinity of	the pipeline. Expect ro	ck to			
Factor		be decelerating and ro	lling.							
Mitigation	1.00E+00	No mitigation required	providing portal is below	v rockfa	ll shadow.					
Options										
Applied M	itgations					Standard	Factor			
Mitigation Site-specific	1									

1.00E-06 FLOC/m

1.67E-09

Geohazard D	Detail
-------------	--------

ID 236 Clo

Category	Avalanche		КР	(Rev V) Start	1083.78	Feature	117
Source	Geotechnica	l Report	KP (Rev V) End 1084.6				
		echnical Report on the P Alberta to Kitimat, BC. N		ev. R for the En	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.01	Bear Enterprises repor to snow avalanche gre			lt E) in low angle	e terrain that is not su	bject
Estimated Frequency	0.001	Treed slope, frequency	of large avalan	che expected to	o be low.		
Vunerability Factor	0.001	Route crosses slope of zone.	approximately	17° in the imme	ediate vicinity of	the pipeline. Depositi	on
Mitigation Options	1.00E+00	Note that rockfall mitig	gation for same	area may requi	re mitigation.		
Applied M	itgations					Standard	l Factor
Mitigation Site-specific	1						

Frequency Loss of Containment

1.00E-08 FLOC/m

1.43E-11

Geoh	azard	Deta	il id 4		Tributary to areas	O Clore River	and adjacent	
Category	Slide - shallo	w/moderat	e deep	к	P (Rev V) Start	1083.78	Feature	115
Source	Geotechnica	l Report		l	KP (Rev V) End	1084.6		
		-	oort on the Pipe (itimat, BC. Mar		Rev. R for the Er	nbridge Northern	Gateway Project	
Legacy	Re	route 🗌	Google Earth	n Filename				
Occurrence Factor	1	Shallow sli	des in colluviun	n.				
Estimated Frequency	0.1	Shallow sli	des in colluviun	n.				
Vunerability Factor	0.001	Shallow sli	des in colluviun	n.				
Mitigation Options	1.00E-02							
Applied M							Standard	
Major slope	e and crest gra	ading						0.01

Site-specific

Frequency Loss of Containment 1.00E-06

FLOC/m

9.09E-10

_				
Geo	hazard	Detail	ID	35

Category	Rockfall		KP (Rev	v V) Start	1084.9	Feature	118
Source	Geotechnica	l Report	KP (Re	ev V) End	1084.94		
		echnical Report on the P Alberta to Kitimat, BC. N		for the En	bridge Northe	rn Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Rockfall occurs from ca	anyon walls of tributa	ary to Clore	2		
Estimated Frequency	0.1	Details of frequency no	ot known.				
Vunerability Factor	0	Aerial crossing above p	ootential rockfall.				
Mitigation Options	1.00E+00	Aerial crossing above p	ootential rockfall.				
Applied M	itgations					Standard F	actor

FLOC/m

0.00E+00

 Frequency Loss of Containment
 0.00E+00

_				
Geo	hazard	Detail	ID	275

Category	Debris Flow		KP (Rev V) Start	1084.9	Feature	116
Source	Geotechnica	l Report	KP (Rev V) End	1084.94		
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the I March 2010	Enbridge Nort	hern Gateway Project	
Legacy	Rer	route 🗌 🛛 Google Ea	arth Filename			
Occurrence Factor	0.01	Potential for debris flo	ws in upper reaches, howeve	r, unlikely to	occur at crossing location	1.
Estimated Frequency	0.01	Potential for debris flo	ws in upper reaches, howeve	r, unlikely to	occur at crossing location	1.
Vunerability Factor	0	Aerial crossing propose	ed placing pipe above debris	flow hazard a	rea.	
Mitigation Options	1.00E-03	Aerial crossing propose	ed.			

Applied Mitgations	Standard Factor
HDD or Aerial installation	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	0.00E+00	FLOC/m
-------------------------------	----------	--------

0.00E+00

_	-			
Gool	hazard	Detail		227
GEU	liazaiu	Delall	U	237
				-

Category	Avalanche		KP (Rev V) Start	1084.95	Feature 117			
Source	Geotechnica	l Report	KP (Rev V) End	1085.3				
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En 1arch 2010	bridge Northern	Gateway Project			
Legacy	✓ Rer	route 🗌 Google Ea	rth Filename					
Occurrence Factor	0	Track well away from route, considered legacy Avalanche track 100 m SW and parallel to route. Bear Enterprises report "both portals (Clore Hoult E) in low angle well forested terrain that is not subject to snow avalanche greater than 2."						
Estimated Frequency	0.001	Treed slope, frequency	of large avalanche expected to	o be low.				
Vunerability Factor	0.001	Deposition zone - 20°						
Mitigation Options	1.00E+00	-	coating, or protecton such as ation for same area may requi					
Applied M	litgations				Standard Factor			
Mitigation Site-specific	1							

FLOC/m

0.00E+00

Frequency Loss of Containment 0.00E+00

Geohazard Detail	
------------------	--

Category	Rockfall		KP (Rev V) Star	t 1085.64	Feature 118			
Source	Geotechnica	l Report	KP (Rev V) En	d 1086.02				
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Aarch 2010	Enbridge Northern	Gateway Project			
Legacy	Rei	route 🗌 Google Ea	arth Filename					
Occurrence	0.1		el portal with possible rockf					
Factor		the near margins of rockfall shadow. Location of portal relative to rockfall hazard needs to be checked.						
Estimated	0.01		fall upslope but not crossing	g route. Location of	portal relative to rockfall			
Frequency		hazard needs to be che	ecked.					
Vunerability Factor	0.01	Route crosses slope at	approximately 23° in the im	mediate vicinity of t	the pipeline.			
Mitigation Options	1.00E+00	Consider concrete coat	ing or portal canopy.					
Applied M	itgations				Standard Factor			
Mitigation Site-specific	1							

FLOC/m

2.63E-08

Geohazai	rd Detail
----------	-----------

Category	Rockfall		KP (Rev	V) Start	1090.08	Feature	120
Source	Geotechnica	l Report	KP (Rev V) End		1091.3		
		echnical Report on the P Alberta to Kitimat, BC. N	-	for the En	bridge Northeri	n Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	Steep slopes near tunn the near margins of roo checked.					
Estimated Frequency	0.01	Evidence of active rock rockfall hazard needs t		med to no	t cross route. L	ocation of portal relat	ive to
Vunerability Factor	0.01	Route located through bouncing and rolling ro		ably close	to source areas	. May be subject to	
Mitigation Options	1.00E+00	Consider portal canopy	<i>.</i>				
Applied M	itgations					Standar	d Factor
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

8.20E-09

Geohazard	Detail
-----------	--------

Category	Avalanche		KP (Rev V) Start	1090.08	Feature 119
Source	Geotechnica	l Report	KP (Rev V) End	1091.3	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project
Legacy	Rer	route 🗌 🛛 Google I	Earth Filename		
Occurrence Factor	0.01	typically occur in bow the map appears to p	oded spur, lower probability of s /ls or open faces. Bear Enterprise ose relatively small avalanche ri remely active and large avalanch	es Report "The a skThe areas ad	lignment corridor shown on jacent on either side of the
Estimated Frequency	0.001	Treed slope, frequend	cy of large avalanche expected to	o be low.	
Vunerability Factor	0.001	Deposition zone - 21°			
Mitigation Options	1.00E+00	Portal canopy to be c	onsidered for rockfall protectior	1.	
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

Frequency Loss of Containment

1.00E-08

FLOC/m

3.33E-11

Geoh	azard	Detail	ID 38	Hoult Creek			
Category	Rockfall			KP (Rev V) Start	1092.02	Feature	122
Source	Geotechnica	l Report		KP (Rev V) End	1092.08		
		echnical Report o Alberta to Kitima		ute Rev. R for the Er 0	bridge Northern	Gateway Project	
Legacy	🗌 Rer	oute 🗌 🛛 Go	ogle Earth Filena	me			
Occurrence Factor	0.001	Crossing close to rockfall shadow		all but appears to be	e clear of problem	area. Located beyond	
Estimated Frequency	0.001	No active rockfa	II at crossing loca	tion.			
Vunerability Factor	1	Aerial crossing.					
Mitigation Options	1.00E+00						
Applied M	litgations					Standard Fa	actor
Mitigation Site-specific	1						

1.00E-06

FLOC/m

1.67E-08

Category	Debris Flow		KP (Rev V) Start	1092.02	Feature 121
Source	Geotechnica	al Report	KP (Rev V) End	1092.08	
		technical Report on the , Alberta to Kitimat, BC	e Pipeline Route Rev. R for the Er . March 2010	ıbridge Northern G	ateway Project
Legacy	🗌 Re	route 🗌 Google	Earth Filename		
Occurrence	0.01	Potential for debris f	lows in upper reaches, however,	unlikely to occur a	t crossing location.
Factor					
Estimated	0.01	Potential for debris f	lows in upper reaches, however,	unlikely to occur a	at crossing location.
Frequency					
/unerability	0	Aerial crossing propo	sed (above debris flow hazard).		
Factor					
Mitigation	1.00E-03	Aerial crossing propo	sed (above debris flow hazard).		
Options					
Applied M	itgations				Standard Factor

FLOC/m

0.00E+00

Fraguency Loss of Containment	0.00E+00
Frequency Loss of Containment	0.00L+00

29-Jan-13 Filter:

Category	Lateral Migr	ation	KP (Rev V) S	tart 1092.02	Feature	123	
Source	Geotechnical Report KP (Rev V) End 1092.08						
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for t March 2010	he Enbridge Northern	Gateway Project		
Legacy	Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	0.01	Channel is well incised	and does not show evide	nce of previous signific	ant lateral erosion.		
Estimated Frequency	0.001	Channel is well incised Frequency expected to	and does not show evide be very low.	nce of previous signific	ant lateral erosion.		
unerability Factor	0.001	10m wide channel.					
Mitigation	1.00E-03	Aerial crossing.					

Applied Mitgations	Standard Factor
Trenchless Methods enter/exit outside extents of lateral migration	0.001

1.00E-13

Frequency Loss of Containment	1.00E-11	FLOC/m	

Geoh	azard	Detail ID	411	Hoult Creek valley	and Upper	Kitimat River	
Category	Slide - shallo	ow/moderate deep		KP (Rev V) Start	1092.12	Feature	124
Source	Geotechnica	l Report		KP (Rev V) End	1106.42		
		technical Report on the I , Alberta to Kitimat, BC.			nbridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google E	arth Filenar	ne			
Occurrence Factor	0.1	Groundwater blow-off Slides in logging road f with no defined occur	fills have oc	curred in a few area		00 0	
Estimated Frequency	0.1	No indication of direct	t occurrence	e on route. Expected	d to be moderate	ly frequent.	
Vunerability Factor	0.001						
Mitigation Options	1.00E-02	Deep cover, grading, d	drainage and	l groundwater cont	rol and/or surfac	e water control as re	quired.

Applied Mitgations	Standard Factor
Minor slope and crest grading	0.1
Drainage and groundwater control	0.1
Surface water control	0.1
Mitigation 10	

Site-specific

1.00E-07

FLOC/m

6.99E-12

Geohazard	Detail	ID	277
-----------	--------	----	-----

Category	Debris Flow		К	P (Rev V) Start	1093.1	Feature	121
Source	Geotechnica	l Report]	KP (Rev V) End 1093.12			
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the En	bridge Norther	n Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Headwater conditions i shallow sliding and sed screening criteria. Evide	liment accumu	lation in channel	, significant cat		
Estimated Frequency	0.1	Active channel possibly	/ subject to rel	atively frequent o	debris flows. Fi	eld check recommer	ıded.
Vunerability Factor	0.1	Transport Zone - Route approximately 19° in th			• • •	•	nt
Mitigation Options	1.00E-04	Deep burial concrete fi	ll over pipe du	e to steep gradie	ents.		

Applied Mitgations Standard Factor Deep burial 0.01 Concrete coating or protection 0.01 Mitigation 1

Frequency Loss of Containment

1.00E-06 FLOC/m

1.00E-08

Site-specific

Geohazard	Detail
-----------	--------

				Г			
Category	Debris Flow		К	P (Rev V) Start	1094.08	Feature	121
Source	Geotechnica	l Report		KP (Rev V) End	1094.1		
		echnical Report on Alberta to Kitimat,	the Pipeline Route BC. March 2010	Rev. R for the En	bridge Northern (Gateway Project	
Legacy	Rei	route 🗌 🛛 Goo	gle Earth Filename				
Occurrence	0.1	Headwater condi	tions include: steep	channel gradien	t, steep upslope v	alley walls with pote	ential
Factor			ediment accumulalt are known to occur i		nent area limits d	ebris flow potential	
Estimated	0.01	Small catchment	limits frequency and	d magnitude. Fiel	d check recomme	ended.	
Frequency							
Vunerability Factor	0.1		Route crosses confi eline. Fan located d		radient approxima	ately 15° in the imm	ediate
Mitigation Options	1.00E-02						
Applied M	itgations					Standard	l Factor
Deep burial							0.01
Mitigation Site-specific	1						

1.00E-06 FLOC/m

2.00E-08

Geohazard	Detail
-----------	--------

Category	Avulsion			KP (Rev V) Start	1094.48	Feature	
Source	Geotechnica	Geotechnical Report KP (Rev V) End 1095.1					
			rt on the Pipeline Ro imat, BC. March 2010		bridge Northern	Gateway Project	
Legacy	🗌 Rei	oute 🗌	Google Earth Filena	me			
Occurrence Factor	1	flows and av channel is low switching) ov	alanches affecting dr cated in the middle c	ainage paths on fan. If the fan but has be or more (far in exces	Review of LiDAR en subject to pas	nnel upslope with debris (March 2012) shows the t avulsion (channel width) with local erosion	
Estimated Frequency	0.1	Based on the apparent activity (sediment supply, debris flow, avalanche) of upslope channel, avulsion frequency is expected to be high.					
Vunerability Factor	0.001	Small stream	ı.				
Mitigation Options	1.00E-02	Note that de	bris flow mitigation	for same channel wi	ll require deep co	over.	

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation 1
te-specific

Frequency Loss of Containment	
-------------------------------	--

1.00E-06 FLOC/m

1.82E-09

Geo	hazard	Detail
-----	--------	--------

Category	Rockfall		KP (Rev V) Start	1094.48	Feature 122
Source	Geotechnica	al Report	KP (Rev V) End	1095.1	
		technical Report on the , Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project
Legacy	Rei	route 🗌 Google	Earth Filename		
Occurrence Factor	1		alluvial fan of active steep bedroo ows, expect to have talus deposti nadow.		· ·
Estimated Frequency	0.01	Active channel with r debris suggest infreq	nany potential source areas, how uent events.	vever, moss and v	regetation on rockfall
Vunerability Factor	0.01	Route crosses fan wit Expect rock to be dec	th slope of approximately 12° in t celerating and rolling.	the immediate vio	inity of the pipeline.
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same channel wi	ll require deep cc	ver.

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

ion	1	
-specific		

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

1.61E-09

Geohazard Detail	ID 240	Hoult Creek Valley

Category	Avalanche		ł	KP (Rev V) Start	1094.48	Feature	125
Source	Geotechnica	l Report		KP (Rev V) End	1095.1		
			rt on the Pipeline Route imat, BC. March 2010	Rev. R for the En	bridge Nort	hern Gateway Project	
Legacy	Rer	oute 🗌	Google Earth Filename				
Occurrence Factor	1	Defined ava	lanche track crosses rout	te, bare slopes.			
Estimated Frequency	0.01	Located at b	ase of avalanche track, r	moderate frequer	ncy of very l	arge avalanches.	
Vunerability Factor	0.001	Deposition z	one - 12°				
Mitigation Options	1.00E-02	Note that de	ebris flow mitigation for	same channel wil	l require de	ep cover.	

Applied Mitgations	Standard Factor
Deep burial	0.01

/ litigation	1	
te-specific	-	

Frequency Loss of Containment	1.00E-07	FLOC/m	1.82E-10

Geohazarc	Detail ID
-----------	------------------

Hoult Creek Valley

278

Category			KF	P (Rev V) Start	1094.48	Feature	121
Source			K	KP (Rev V) End 1095.1			
		echnical Report on the Alberta to Kitimat, BC.		Rev. R for the Er	nbridge Norther	n Gateway Project	
Legacy	Rer	route 🗌 Google	Earth Filename				
Occurrence Factor	1	Headwater condition shallow sliding and se screening criteria. Evi	ediment accumul	ation in channe	el, significant cat	valls with potential for chment area - meets	
Estimated Frequency	0.1	Active channel possib	ly subject to rela	atively frequent	debris flows. Fie	eld check recommende	ed.
Vunerability Factor	0.01	Deposition or erosion approximate channel					
Mitigation Options	1.00E-02	Deep burial.					
Applied M	litgations					Standard	l Factor
Deep buria	I						0.01
Mitigation Site-specific	1						

1.00E-05

FLOC/m

1.67E-08

Geohazard	Detail
-----------	--------

Category	Rockfall			KP (I	Rev V) Start	1095.1	Feature	122
Source	Geotechnical Report			KP (Rev V) End		1095.38		
		echnical Rep Alberta to Ki			v. R for the En	bridge Norther	n Gateway Project	
Legacy	🗌 Rei	route 🗌	Google Ea	rth Filename				
Occurrence Factor	1	avalanches,		s, expect to have			nannel subject to pose ock. Route located ne	
Estimated Frequency	0.01		inel with ma est infreque		rce areas, hov	vever moss and	vegetation on rockfa	II
Vunerability Factor	0.01			slope of approxir erating and rollir		the immediate v	vicinity of the pipeline	<u>.</u>
Mitigation Options	1.00E-02	Note that d	lebris flow m	nitigation for san	ne channel wi	ll require deep	cover.	

Applied Mitgations S	tandard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

ion	1	
-specific	—	

Frequency Loss of C	Containment	1.00E-06
---------------------	-------------	----------

3.57E-09

FLOC/m

\sim				
Geo	hazard	Detail	ID	241

Category	Avalanche		К	P (Rev V) Start	1095.1	Feature	125
Source	Geotechnica	Geotechnical Report		KP (Rev V) End	1095.38		
		echnical Report on the F Alberta to Kitimat, BC. I		Rev. R for the En	bridge Nortl	hern Gateway Project	
Legacy	Rer	route 🗌 Google E	arth Filename				
Occurrence Factor	0.1	Avalanche track 70 m i with exception of lack		Steep terrain wi	th high snov	vpack, meets screenin	g criteria
Estimated Frequency	0.01	Treed slope, frequency avalanches.	v expected to b	e low. Smaller c	atchment m	ay limit frequency of l	arge
Vunerability Factor	0.001	Deposition zone - 10°					
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for s	ame channel wil	l require dee	ep cover.	

Applied Mitgations	Standard Factor
Deep burial	0.01

Mitigation	1
Site-specific	

3.33E-11

Frequency Loss of Containment	1.00E-08	FLOC/m
L		L

-		_		
Geo	hazard	Detail	ID	279

Category	Debris Flow		к	P (Rev V) Start	1095.1	Feature	121
Source	Geotechnica	l Report		KP (Rev V) End	1095.38		
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the E	nbridge Northern	Gateway Project	
Legacy	🗌 Rer	oute 🗌 Google Ea	rth Filename				
Occurrence	1	Headwater conditions i					
Factor		shallow sliding and sed screening criteria. Evide			-	hment area - mee	ets
Estimated Frequency	0.1	Active channel possibly	subject to rel	atively frequen	t debris flows. Fiel	ld check recomme	ended.
Vunerability Factor	0.01	Deposition or erosion is approximate channel g		-		•	n with an
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Stand	dard Factor
Deep burial							0.01
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

3.33E-08

Category	Avulsion			I	KP (Rev V) Start	1095.1	Feature	
Source	Assessment	based on re	view of avai		KP (Rev V) End	1095.38		
Legacy	Re	route 🗌	Google Earth	n Filename	2			
Occurrence	1	Route cro	sses lower sectio	on of steep	o, well-defined fa	an. Very active cha	annel upslope with	debris
Factor		channel is switching)	located in the n	niddle of t 400 m or	he fan but has b	een subject to pas	R (March 2012) sho t avulsion (channe width) with local e	el
Estimated	0.1					bris flow, avalancl	ne) of upslope char	nnel,
Frequency		avulsion fi	requency is expe	ected to be	e high.			
/unerability	0.001	Small stre	am.					
Factor								
Mitigation Options	1.00E-02	Note that	debris flow miti	gation for	r same channel v	will require deep c	over.	
Applied M	itgations						Stand	ard Facto
Dineline he	low maximum	predicted s	cour depth alon	ig alluvial f	fan impact area			0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m	3.33E-09

Geohazard	Detail ID
-----------	------------------

13

Category	Avulsion		КР	(Rev V) Start	1095.38	Feature
Source	Geotechnica	l Report		P (Rev V) End	1095.78	
		echnical Report on the P Alberta to Kitimat, BC. N		ev. R for the En	bridge Northe	rn Gateway Project
Legacy	🗌 Rei	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Route crosses lower se flows and avalanches a				hannel upslope with debris
Estimated Frequency	0.1	Based on the apparent avulsion frequency is e		1.1.1.	ris flow, avala	nche) of upslope channel,
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow n	nitigation for sa	ame channel wi	ll require deep	o cover.

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
te-specific	

Frequency Loss of Containment	1.00E-06	FL
-------------------------------	----------	----

2.86E-09

Geohazard	Detail	I
-----------	--------	---

ID 41 Ho

Hoult Creek Valley

Category	Rockfall			KP (Rev V) Start	1095.38	Feature	122
Source	Geotechnica	l Report		KP (Rev V) End	1095.78		
			port on the Pipeli Kitimat, BC. March	ne Route Rev. R for the Er n 2010	nbridge Northern G	Gateway Project	
Legacy	Rei	route 🗌	Google Earth I	Filename			
Occurrence Factor	1	avalanche		fan of active steep bedro pect to have talus depost			
Estimated Frequency	0.01		nnel with many p gest infrequent e	otential source areas, hov vents.	wever moss and ve	getation on rockfal	
Vunerability Factor	0.01			of fan with slope of appr be decelerating and rollin		n the immediate vic	inity of
Mitigation Options	1.00E-02	Check bloc	ck size. Note that	debris flow mitigation fo	r same channel wil	l require deep cove	er.

Applied Mitgations Sta	andard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Mitigation	1
te-specific	

FLOC/m

2.86E-09

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

Geohazard	Detail
-----------	--------

ID 280 **Hou**

Category	Debris Flow		K	(Rev V) Start	1095.38	Feature	121
Source	Geotechnica	al Report		KP (Rev V) End	1095.78		
		technical Report on th , Alberta to Kitimat, B		Rev. R for the En	bridge Northern	Gateway Project	
Legacy	Re	route 🗌 Googl	e Earth Filename				
Occurrence Factor	0.1		nt accumulaltion	. Small catchmen		alls with potential for ris flow potential, ho	
Estimated Frequency	0.01	Small catchment lin	nits frequency an	d magnitude. Fiel	d check recomn	nended.	
Vunerability Factor	0.1	Transport zone - Ro immediate vicinity o		r portion of fan w	ith gradient app	roximately 15-20° in	the
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Standar	d Factor
Deep burial							0.01

Mitigation	1	1
Site-specific		

Frequency Loss of Containment

1.00E-06

FLOC/m

2.86E-09

Geohazard	Detail 🗉)
-----------	----------	---

Houl

14

Category	Avulsion		КР	(Rev V) Start	1095.82	Feature
Source	Geotechnical Report KP (Rev V) End		ጀዋ (Rev V) End	1096.84		
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the En	bridge Northern	n Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Route crosses lower se flows and avalanches a				nnel upslope with debris
Estimated Frequency	0.1	Based on the apparent avulsion frequency is e	-		ris flow, avalanc	he) of upslope channel,
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for s	ame channel wi	ll require deep c	cover.

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-06

FLOC/m

1.05E-09

Geo	hazard	Detail
-----	--------	--------

ID 42 **Ho**

Category	Rockfall		KP (Rev V) Start	1095.82	Feature 122
Source	Geotechnica	l Report	KP (Rev V) End	1096.84	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northern (Gateway Project
Legacy	Rei	route 🗌 Google E	arth Filename		
Occurrence Factor	1		lluvial fan of active steep bedroo ws, expect to have talus deposti w.		
Estimated Frequency	0.01	Active channel with m debris suggest infrequ	any potential source areas, how ent events.	vever moss and ve	egetation on rockfall
Vunerability Factor	0.01	Route crosses fan with Expect rock to be dece	n slope of approximately 11° in t elerating and rolling.	the immediate vic	inity of the pipeline.
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same channel wi	ll require deep co	ver.

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

ion	1	
-specific		

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

9.80E-10

Geohazard	Detall	ID	242

Category	Avalanche		KP (Rev V) Start	1095.82	Feature	125
Source	Geotechnical Report		KP (Rev V) End	1096.84	096.84	
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Er March 2010	nbridge Northeri	n Gateway Project	
Legacy	🗌 Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1	Multiple avalanche tra criteria with exception	cks finger out on fan terminati of lack of trees.	ing within 40 m d	of route. Meets scree	ening
Estimated Frequency	0.01	Treed slope, frequency of large avalanche expected to be low.				
Vunerability Factor	0.001	Deposition zone - 11°				
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for same channel w	ill require deep	cover.	
	itaationa	L			Stondo	nd Castan

Applied Mitgations	Standard Factor
Deep burial	0.01

Mitigation	1
te-specific	

Frequency Loss of Containment	1.00E-08	
-------------------------------	----------	--

_				
Geo	hazard	Detail	ID	281

Category	/ Debris Flow		KP (Rev V) Start	1095.82	Feature121
Source	Geotechnica	l Report	KP (Rev V) End	1096.84	
		echnical Report on the I Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project
Legacy	Re Re	route 🗌 Google E	arth Filename		
Occurrence Factor	1	shallow sliding and see	include: steep channel gradien diment accumulation in channe dence of past debris flow events	l, significant catcl	
Estimated Frequency	0.1	Active channel possibl	y subject to relatively frequent	debris flows. Fiel	d check recommended.
Vunerability Factor	0.01		expected along route which cro gradient of 11° in the immediat		
Mitigation Options	1.00E-02	Deep burial.			
Applied M	litgations				Standard Factor
Deep buria					0.01
Mitigation Site-specific	1				

Frequency Loss of Containment

1.00E-05

FLOC/m

1.18E-08

Geol	hazard	Detail
------	--------	--------

ID 43 H

Category	Rockfall		KP (Rev V) Start	1096.84	Feature122
Source	Geotechnica	l Report	KP (Rev V) End	1097.06	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project
Legacy	Rei	route 🗌 Google E	arth Filename		
Occurrence Factor	1		lluvial fan of active steep bedroo vs, expect to have talus depostio w.		2
Estimated Frequency	0.01	Active channel with m debris suggest infrequ	any potential source areas, how ent events.	vever, moss and	vegetation on rockfall
Vunerability Factor	0.01	Route crosses fan with Expect rock to be bour	n slope of approximately 27° in t ncing or rolling.	he immediate vi	cinity of the pipeline.
Mitigation Options	1.00E-02	Note that debris flow i	mitigation for same channel wi	ll require deep c	over.

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

ion	1	
-specific		

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

Geohazard	Detail	ID	282

Category	Debris Flow		KP (Rev V) Start	1096.84	Feature	121
Source	Geotechnica	al Report	KP (Rev V) End	1097.06		
		technical Report on the , Alberta to Kitimat, BC	e Pipeline Route Rev. R for the En 2. March 2010	bridge Northern G	ateway Project	
Legacy	🗌 Rei	route 🗌 Google	Earth Filename			
Occurrence Factor	0.1	for erosion and sedir	ns include: steep channel gradien ment accumulaltion. Small catchr known to occur in region.		, ,	ential
Estimated Frequency	0.01	Small catchment limi	its frequency and magnitude. Fie	ld check recomme	nded.	
Vunerability Factor	0.1	Transport Zone - Rou immediate vicinity of	ute crosses lower portion of fan w f the pipeline.	vith gradient appro	oximately 15° in the	
Mitigation Options	1.00E-02	Deep burial.				

Applied Mitgations	Standard Factor
Deep burial	0.01

1

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

4.00E-09

FLOC/m

Geoh	azard	Detail ID	504 H	oult Creek Valley		
Category	Avulsion		КР	(Rev V) Start 1096.84	1 Feature	2
Source	Assessment	based on review of avai	KF	(Rev V) End 1097.06	5	
Legacy	Rei	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	1	Fan with former avulsi	on events review	red on LiDAR (March 20:	12).	
Estimated Frequency	0.1	Based on the apparent frequency is expected		nt supply, debris flow) c	f upslope channel, avul	sion
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow i	nitigation for sa	me channel will require	deep cover.	
Applied M	itgations				Stan	dard Factor
Pipeline be	low maximum	predicted scour depth a	long alluvial fan	impact area		0.01

Mitigation	1
Site-specific	

4.54E-09

Frequency Loss of Containment	1.00E-06	FLOC/m

Geohazard [Detail ID
-------------	------------------

44

Hoult Creek Valley

Category	Rockfall		KP (Rev V) Start	1097.06	Feature	122
Source	Geotechnica	l Report	KP (Rev V) End	1097.2		
		echnical Report on th Alberta to Kitimat, BC	e Pipeline Route Rev. R for the En C. March 2010	bridge Northern G	ateway Project	
Legacy	Rei	route 🗌 🛛 Google	e Earth Filename			
Occurrence Factor	1	-	/alluvial fan of active steep bedroe lows, expect to have talus depostie			
Estimated Frequency	0.01	Active channel with debris suggest infree	many potential source areas, how quent events.	vever moss and ve	getation on rockfa	11
Vunerability Factor	0.01		ith slope of approximately 22° in t ecelerating and rolling.	he immediate vici	nity of the pipeline	2.
Mitigation Options	1.00E-02	Note that debris flow	w mitigation for same channel wi	l require deep cov	/er.	

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Frequency Loss of Containment 1.00E-06

Geohazard	Detail ID)
-----------	-----------	---

283

Bruderheim, Alberta to Kitimat, Legacy Reroute Goog Occurrence 0.1 Headwater condit for erosion and se however events a	ogle Earth Filename itions include: steep channel gradient, steep upslope valley walls with pote rediment accumulaltion. Small catchment area limits debris flow potential are known to occur in region.	121 ntial
Overall Geotechnical Report on Bruderheim, Alberta to Kitimat, Legacy Reroute Goog Occurrence Factor 0.1 Headwater condit for erosion and se however events a Estimated 0.01 Small catchment I	a the Pipeline Route Rev. R for the Enbridge Northern Gateway Project , BC. March 2010 ogle Earth Filename itions include: steep channel gradient, steep upslope valley walls with pote rediment accumulaltion. Small catchment area limits debris flow potential are known to occur in region.	ntial
Bruderheim, Alberta to Kitimat, Legacy Reroute Goog Occurrence 0.1 Headwater condit for erosion and se however events a Estimated 0.01 Small catchment I	, BC. March 2010	ntial
Occurrence 0.1 Headwater condit Factor for erosion and se however events a Estimated 0.01 Small catchment I	itions include: steep channel gradient, steep upslope valley walls with pote rediment accumulaltion. Small catchment area limits debris flow potential are known to occur in region.	ntial
Factor for erosion and set however events a Estimated 0.01 Small catchment I	ediment accumulaltion. Small catchment area limits debris flow potential are known to occur in region.	ntial
	limits frequency and magnitude. Field check recommended.	
Vunerability 0.1 Transport Zone - F Factor immediate vicinity	Route crosses lower portion of fan with gradient approximately 22° in the ty of the pipeline.	
Mitigation 1.00E-02 Deep burial. Options		
Applied Mitgations	Standard	Factor
Deep burial		0.01
Mitigation 1 Site-specific		

Frequency Loss of Containment

5.00E-09

FLOC/m

29-Jan-13

Geoh	azard	Detail ID	505	Hoult Creek Valley	
Category	Avulsion			KP (Rev V) Start 1097.06	Feature
Source	Assessment	based on review of avai		KP (Rev V) End 1097.2	
Legacy	Rei	route 🗌 🛛 Google E	arth Filena	ame	
Occurrence Factor	1	Fan with former avulsi	ion events	reviewed on LiDAR (March 2012).	
Estimated Frequency	0.1	Based on the apparent frequency is expected		ediment supply, debris flow) of up:	slope channel, avulsion
/unerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-02	Note that debris flow	mitigation	for same channel will require deep) cover.
Applied M	itgations				Standard Facto
Pipeline be	low maximum	predicted scour depth a	along alluv	ial fan impact area	0.01

Frequency Loss of Containment	1.00E-06	FLOC/m

Geohazard	Detail
-----------	--------

ID 506 Hoult C

Hoult Creek Valley

Category	Debris Flow		KP (Rev V) Start	1097.22	Feature	121
Source	Geotechnica	l Report	KP (Rev V) End	1097.38		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1	for erosion and sedime	include: steep channel gradien ent accumulaltion. Small catchn own to occur in region.			ntial
Estimated Frequency	0.01	Small catchment limits	frequency and magnitude. Fie	ld check recomm	nended.	
Vunerability Factor	0.1	Transport Zone - Route immediate vicinity of tl	e crosses lower portion of fan w he pipeline.	vith gradient app	proximately 17° in the	
Mitigation Options	1.00E-02	Deep burial				
Applied M					Standard	Factor
Deep buria						0.01
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-06

FLOC/m

6.67E-09

Geoh	azard	Detail ID	508	Hoult Creek Va	lley	
Category	Avulsion			KP (Rev V) Start 10	97.22 Featu	ıre
Source	Assessment	based on review of avai		KP (Rev V) End 10	97.38	
Legacy	Re Re	route 🗌 Google Ea	arth Filena	me		
Occurrence Factor	1	Fan with former avulsi	on events	reviewed on LiDAR (Marc	h 2012).	
Estimated Frequency	0.1	Based on the apparent frequency is expected			ow) of upslope channel, av	ulsion
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow r	nitigation	for same channel will rec	quire deep cover.	
Applied M	litgations				Sta	andard Factor
Pipeline be	low maximum	predicted scour depth a	long alluvi	al fan impact area		0.01

Geohazard Detail	
-------------------------	--

ID 509 Hoult

Hoult Creek Valley

Category	Rockfall		KP (Rev V) Start	1097.22	Feature	122
Source	Geotechnica	al Report	KP (Rev V) End	1097.38		
		technical Report on the , Alberta to Kitimat, BC	e Pipeline Route Rev. R for the Ei 2. March 2010	nbridge Northern (Gateway Project	
Legacy	Re Re	route 🗌 🛛 Google	Earth Filename			
Occurrence Factor	1		'alluvial fan of active steep bedro ows, expect to have talus depost			
Estimated Frequency	0.01	Active channel with debris suggest infrec	many potential source areas, ho quent events.	wever moss and ve	egetation on rockfal	
Vunerability Factor	0.01		th slope of approximately 17° in celerating and rolling.	the immediate vic	inity of the pipeline	
Mitigation Options	1.00E-02					

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Mitigation	1	
Site-specific		

Frequency Loss of Containment	

1.00E-06 FLOC/m

6.67E-09

Geohazard	Detail
-----------	--------

507

ID

Category	Debris Flow		KP (Rev	V) Start	1097.38	Feature	121
Source	Geotechnica	l Report	KP (Rev	v V) End	1097.48		
		echnical Report on the F Alberta to Kitimat, BC. I	•	for the Enl	bridge Norther	n Gateway Project	
Legacy	🗌 Rei	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	.1 Headwater conditions include: steep channel gradient, steep upslope valley walls with potential for erosion and sediment accumulaltion. Small catchment area limits debris flow potential however events are known to occur in region.				ial	
Estimated Frequency	0.01	Small catchment limits frequency and magnitude. Field check recommended.					
Vunerability Factor	0.1	Transport Zone - Route immediate vicinity of t	-	on of fan w	ith gradient ap	proximately 19° in the	
Mitigation Options	1.00E-02	Deep burial					
Applied M	itgations					Standard Fa	actor
Deep buria						0	0.01
Mitigation Site-specific	1	1					

Geoh	azard	Detail ID 510	Hoult Creek Valley	
Category Source	Avulsion Assessment	based on review of avai	KP (Rev V) Start 1097.38 KP (Rev V) End 1097.48	Feature
Legacy	Re	route 🗌 Google Earth Fil	ename	
Occurrence Factor	1	Fan with former avulsion even	nts reviewed on LiDAR (March 2012).	
Estimated Frequency	0.1	Based on the apparent activit frequency is expected to be h	ty (sediment supply, debris flow) of upslop high.	e channel, avulsion
Vunerability Factor	0.001	Small stream.		
Mitigation Options	1.00E-02	Note that debris flow mitigati	ion for same channel will require deep co	ver.
Applied M	litgations			Standard Factor
Pipeline be	low maximum	predicted scour depth along al	lluvial fan impact area	0.01

Frequency Loss of Containment	1.00E-06	FLOC/m	

-	-			
Geo	hazard	Detail	חו	511
ULU	nazara		שו	JTT

Category	Rockfall		K	(P (Rev V) Start	1097.38	Feature	122
Source	Geotechnica	l Report		KP (Rev V) End 1097.48			
	Overall Geotechnical Report on the Bruderheim, Alberta to Kitimat, BC.			Rev. R for the En	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 🛛 Goog	le Earth Filename				
Occurrence Factor	1		-			nnel subject to pos ck. Route located w	
Estimated Frequency	0.01	Active channel with many potential source areas, however moss and vegetation on rockfall debris suggest infrequent events.			all		
Vunerability Factor	0.01	Route crosses fan v Expect rock to be o			he immediate vio	cinity of the pipelin	е.
Mitigation Options	1.00E-02						

Applied Mitgations Sta	andard Factor	
Deep burial (established on max particle impact energy) and/or extra compaction	0.01	

Mitigation	1
te-specific	

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geohazard Det	tail ID 15

			а		
Category	Avulsion		KP (Rev V) Start	1097.48	Feature
Source	Geotechnica	l Report	KP (Rev V) End	1098.04	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge Nortl	hern Gateway Project
Legacy	Rer	oute 🗌 Google Ea	arth Filename		
Occurrence	1	Route crosses lower se	ction of steep well defined fan.	. Very active	channel upslope with debris
Factor		flows and avalanches a	ffecting drainage paths on fan.	Located in i	incised channel.
Estimated	0.1	Based on the apparent	activity (sediment supply, deb	ris flow, ava	lanche) of upslope channel,
Frequency		avulsion frequency is e	xpected to be high		
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-03	Note that debris flow r	nitigation for same channel wi	ll require de	ep cover and heavy wall pipe.

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01
Heavy wall pipe	0.1
Mitigation 1	

Frequency Loss of Containment

1.00E-07 FLOC/m

1.82E-10

Site-specific

Geohazard I	Notail In	15
UCUIIazai u i		45

Category	Rockfall		KP (Rev V) Start	1097.48	Feature	123
Source	Geotechnica	l Report	KP (Rev V) End	1098.04		
		echnical Report on the Alberta to Kitimat, BC	e Pipeline Route Rev. R for the Er . March 2010	nbridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google	Earth Filename			
Occurrence Factor	1	-	alluvial fan of active steep bedro ows, expect to have talus depost ow.			
Estimated Frequency	0.01		many potential source areas, how ggest infrequent rockfall.	wever moss and v	regetation on fan wh	ere
Vunerability Factor	0.01		th slope of approximately 22° in celerating and rolling.	the immediate vi	cinity of the pipeline	
Mitigation Options	1.00E-03	Note that debris flow	v mitigation for same channel w	ill require deep co	over and heavy wall	pipe.

Standard Factor
0.01
0.1

Mitigation	1
Site-specific	

FLOC/m

1.82E-10

Frequency Loss of Containment	1.00E-07
-------------------------------	----------

Geohazard Detail	ID 243	Hoult Creek Valley

Category	Avalanche		к	P (Rev V) Start	1097.48	Feature	125
Source	Geotechnical Report			KP (Rev V) End	1098.04		
			on the Pipeline Route at, BC. March 2010	Rev. R for the En	bridge Northern	n Gateway Project	
Legacy	Rer	oute 🗌 🛛 G	oogle Earth Filename				
Occurrence Factor	1	Defined avalan	che track crosses rout	e, bare slopes.			
Estimated Frequency	0.01	Bare slope sugg avalanches.	gests regular occurren	ce, however sma	ller catchment i	may limit frequency c	of large
Vunerability Factor	0.001	Deposition zon	e - 22°				
Mitigation Options	1.00E-03	Note that debr	is flow mitigation for s	same channel wil	ll require deep (cover and heavy wall	pipe.

Applied Mitgations	Standard Factor
Deep burial	0.01
Heavy wall pipe	0.1
Mitigation 1 Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	1.82E-11

Geohazard Deta	il
-----------------------	----

284 Hoult

ID

Category	Debris Flow		к	P (Rev V) Start	1097.48	Feature	121
Source	Geotechnica	l Report	_]	KP (Rev V) End	1098.04		
		echnical Report on the F Alberta to Kitimat, BC. N		Rev. R for the En	bridge Northerr	n Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename				
Occurrence	1	Headwater conditions	include: steep	channel gradien	t, steep valley w	valls with potential fo	r
Factor		shallow sliding and sediment accumulation in channel, significant catchment area - meets screening criteria. Evidence of past debris flow events.					
Estimated Frequency	0.1	Active channel possibly	y subject to rel	atively frequent	debris flows. Fie	eld check recommenc	led.
Vunerability Factor	0.1	Transport Zone - Route immediate vicinity of t		r portion of fan w	vith gradient ap	proximately 22° in the	e
Mitigation Options	1.00E-03	Deep burial, heavy wal	l pipe.				

Frequency Loss of Containment

1.00E-05 FLOC/m

1.82E-08

Site-specific

Standard Factor

0.01

0.1

Geo	hazard	Detail	ID
GEU	iiazaiu	νειαπ	טו

Category	Slide - shallo	w/moderate o	leep K	P (Rev V) Start	1099.05	Feature	128	
Source	Geotechnical Report			KP (Rev V) End	1104.2			
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Re	route	Google Earth Filename					
Occurrence Factor	0		5 200m downstream who s in surface soils along to			comments "Several small rcutting)." Avoided by		
Estimated Frequency	0	Avoided by ro	outing					
Vunerability Factor	0	Avoided by re	outing.					
Mitigation Options	1.00E-03	HDD crossing	proposed. Slides have b	peen avoided by	routing.			
Applied M	litestions					Standard Fa	octor	

412

Abbuca uniBarion		
Deep burial belows	slide	0.001

Mitigation	1
ite-specific	

Frequency Loss of Containment	0.00E+00
-------------------------------	----------

FLOC/m

Geohazard	Detail	ID	16

Category	Avulsion		KP (Rev V) Start	1099.06	Feature
Source	Geotechnica	l Report	KP (Rev V) End	1099.28	
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge Nort	hern Gateway Project
Legacy	🗌 Rei	route 🗌 Google Ea	arth Filename		
Occurrence Factor	0.01		at base of steeper slopes, char AR. Conditions for occurrence		
Estimated Frequency	0.01	Difficult to assess frequ	uency. Field check needed.		
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E+00				
Applied M	itgations				Standard Factor
Mitigation Site-specific	1				

Geohazard	Detail	ID	46

Houl

Category	Rockfall		KP (R	ev V) Start	1099.06	Feature	124	
Source	Geotechnica	Report	KP (Rev V) End 1099.28					
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010					
Legacy	Rer	oute 🗌 🛛 Google Ea	rth Filename					
Occurrence Factor	0.01	Active rockfall source 1 screening criteria only p		out visible to	1.1km. Beyond	rockfall shadow area	a -	
Estimated Frequency	0.001	Rockfall source upslope	e, however, beyon	d rockfall sha	adow area.			
Vunerability Factor	0.001	Route crosses fan with rockfall expected.	slope of approxim	ately 7° in th	e immediate vi	cinity of the pipeline.	No	
Mitigation Options	1.00E+00							
Applied M	itgations					Standa	rd Factor	
Mitigation Site-specific	1							

Frequency Loss of Containment

1.00E-08 FLOC/m

Geohazard Detail

285

Category	Debris Flow		КР	(Rev V) Start	1099.06	Feature121
Source	Geotechnical	Report	KP (Rev V) End 1099.28			
		echnical Report on the P Alberta to Kitimat, BC. N		ev. R for the Enl	bridge Northern Gatew	ay Project
	brademenn,	Alberta to Kitimat, be. w				
Legacy	Rer	oute 🗌 Google Ea	orth Filename			
Occurrence Factor	0.01	Headwater conditions i catchment area limits d		-		-
Estimated Frequency	0.01	Small catchment limits recommended.	frequency and	nagnitude. Veg	etated at crossing. Fiel	d check
Vunerability Factor	0.01	Deposition or erosion is approximate channel g		-	-	
Mitigation Options	1.00E+00					
Applied M	litgations					Standard Factor
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-06

FLOC/m

Geohazard Detail	ID	17
------------------	----	----

Hunter Creek

Category	Avulsion		KP (Rev V) Start	1103.86	Feature	126
Source	Geotechnica	l Report	KP (Rev V) End	1104.22		
		echnical Report on the Pi , Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En 1arch 2010	bridge Northei	rn Gateway Project	
Legacy	Rei	route 🗌 🛛 Google Ea	rth Filename			
Occurrence Factor	1	lower on the fan. Define	an prone to avulsion based win ed occurrence, however, exten ob to west and valley sidewall	nt is limited at		
Estimated Frequency	0.1	High frequency based o lower parts of the fan.	on active recent (partially vege	tated) abandor	ned distributary chann	els on
Vunerability Factor	0.1	Large stream.				
Mitigation Options	1.00E-04	HDD crossing proposed				

Applied Mitgations	Standard Facto	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	nt 0.0001	

FLOC/m

2.86E-09

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

280

Category	Debris Flow				KP (Rev V) Sta	rt 1103.86	Feature	127
Source	Geotechnica	l Report			KP (Rev V) En	d 1104.22		
	Overall Geot Bruderheim,				e Rev. R for the	Enbridge Northern	Gateway Project	
Legacy	🗌 Rei	oute 🗌	Google E	arth Filenam	e			
Occurrence Factor	1	Several pa	st occurence	25.				
Estimated Frequency	0.1	Doccumer	ited occurre	nce suggests	high relative fr	equency.		
unerability Factor	0.01		n or erosion e vicinity of t		based on an app	proximate channel gr	adient of 3° in the	
Mitigation Options	1.00E-03	HDD cross	ing propose	d.				

Applied Mitgations	Standard Pactor
HDD or Aerial installation	0.001

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Detail ID	488 Hunter Cree	!k	
Category	Scour		KP (Rev V) Start	1103.86	Feature 126
Source	Geotechnica	l Report	KP (Rev V) End	1104.22	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge Northern	n Gateway Project
Legacy	Rer	oute 🗌 🛛 Google E	arth Filename		
Occurrence Factor	1	Unconsolidated river b	ped material expected at crossir	ng location.	
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events correspond to h	igh runoff even	ts typically 25 to 200 year
Vunerability Factor	0.001	25m wide channel.			
Mitigation Options	1.00E-03	HDD crossing propose	d.		

Applied Mitgations S	tandard Factor	
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movemen	t 0.001	

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-08	FLOC/m	2.86E-11

Geohazard	Detail
-----------	--------

Category	Debris Flow		KP (Rev V) Start	1106.56	Feature	130
Source	Geotechnica	l Report	KP (Rev V) End	1106.62		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	nbridge Northern	Gateway Project	
Legacy	Rei	oute 🗌 🛛 Google I	Earth Filename			
Occurrence Factor	0.1		s include: steep channel gradien debris flow potential, however,			
Estimated Frequency	0.01	Small catchment limit recommended.	s frequency and magnitude. Ve	getated at crossir	ng. Field check	
Vunerability Factor	0.1	Transport Zone - Rout the immediate vicinity	te crosses near top of poorly def y of the pipeline.	fined fan with gra	adient approximately 2	26° in
Mitigation Options	1.00E-02	Deep burial.				
Applied M	itgations				Standard	Factor

Site-specific

Frequency Loss of Containment

1.00E-06 FLOC/m

Category Slide - shallow/moderate deep

Source Geotechnical Report

		chnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Alberta to Kitimat, BC. March 2010
Legacy		
Legacy	Re	Google Earth Filename
-		
Occurrence	0.1	Steep gullied slopes, potentially unstable. Evidence of shallow to moderately deep slides in
Factor		glaciofluvial and till deposits. Groundwater blow-off failures have occurred locally during logging road construction. Considered credible potential for sliding with no defined occurrence at location.
Estimated	0.1	No indication of direct occurrence on route. Expected to be moderately frequent.
Frequency		
Vunerability	0.001	

Factor		
Mitigation Options	1.00E-02	Deep cover, grading, drainage and groundwater control and/or surface water control as required.

Applied Mitgations	Standard Factor
Minor slope and crest grading	0.1
Surface water control	0.1
Mitigation 1	

Frequency l	Loss of	Contai	inment
-------------	---------	--------	--------

1.00E-07 FLOC/m

5.56E-12

Site-specific

Upper Kitimat River valley

1106.62

1124.62

Feature

131

KP (Rev V) Start

KP (Rev V) End

Geohazard	Detail
-----------	--------

ID 18

Category	Avulsion		К	P (Rev V) Start	1106.96	Feature	129
Source	Geotechnica	l Report		KP (Rev V) End	1107.42		
		echnical Report on t Alberta to Kitimat, E		Rev. R for the En	bridge Northern	Gateway Project	
Legacy	Rer	route 🗌 🛛 Goog	le Earth Filename				
Occurrence Factor	0.1		for occurrence. Fo			e upslope contributes e, channel is incised.	
Estimated Frequency	0.01	High sediment sup	ply, however, no v	isible former cha	nnels. Field cheo	ck needed.	
Vunerability Factor	0.001	Small stream.					
Mitigation Options	1.00E-02	Note that debris flo	ow mitigation for	same channel wi	ll require deep c	over.	

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-08

FLOC/m

6.67E-11

Geohazard D	Detail
-------------	--------

Category	Rockfall			KP (Rev V) Start	1106.96	Feature	135
Source	Geotechnica	al Report		KP (Rev V) End 1107.42			
			t on the Pipeline mat, BC. March 20	Route Rev. R for the Er D10	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌	Google Earth File	name			
Occurrence Factor	0.01			g from very steep bed Irther field checks requ	• .		
Estimated Frequency	0.001		0	stance upslope from p k fall shadow, expected			n.
Vunerability Factor	0.01		s fan with slope o celerating and rol	f approximately 9° in t ling.	he immediate vici	nity of the pipeline.	Expect
Mitigation Options	1.00E-02	Note that del	bris flow mitigatic	n for same channel w	ill require deep co	over.	

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Frequency Loss of Containment 1.00E-09

FLOC/m

6.67E-12

Category	Debris Flow		KP (Rev V) Start	1106.96	Feature 130
Source	Geotechnica	l Report	KP (Rev V) End	1107.42	
Legacy	Bruderheim,	Alberta to Kitimat, BC. N	peline Route Rev. R for the En larch 2010 rth Filename	bridge Northern (Gateway Project
Occurrence Factor	0.1		nclude: steep channel gradien ment accumulation in channe		
Estimated Frequency	0.1	Located in Coast Mount recommended.	tains with high precipitaton, w	egetated at crossi	ng. Field check
Vunerability Factor	0.01		expect at route location whice I gradient of 9° in the immedi		
Mitigation Options	1.00E-02	Deep burial.			
Applied M	itgations				Standard Factor
Deep buria					0.01
Mitigation Site-specific	1				

Frequency Loss of Containment

FLOC/m 1.00E-06

6.67E-09

Geohazard	Detail
-----------	--------

Category	Avulsion		KP (Rev V) Start	1107.52	Feature129
Source	Geotechnica	l Report	KP (Rev V) End	1107.8	
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northe	ern Gateway Project
Legacy	Rer	route 🗌 Google E	Earth Filename		
Occurrence Factor	0.1	channel may trigger a	ative to open surrounding terrain vulsion. Required conditions on r channels identified on LiDAR (I	ly partially me	
Estimated Frequency	0.01	No evidence of previo required.	ous avulsion based on initial stud	ly, therefore lo	ow frequency. Field check
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same channel wi	ll require dee	o cover.

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment1.00E-08

FLOC/m

3.57E-11

ID 289

Category	Debris Flow		K	P (Rev V) Start	1107.52	Feature	130
Source	Geotechnica	Report		KP (Rev V) End	1107.8		
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the En	bridge North	ern Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Documented past occu erosion along the chan up the slope."					
Estimated Frequency	0.1	Doccumented occurren	nce suggests hi	gh relative frequ	ency.		
Vunerability Factor	0.01	Deposition or erosion i an approximate chann					an with
Mitigation Options	1.00E-03	Deep burial, heavy wal	ll pipe.				

Applied Mitgations Standard Factor Deep burial Heavy wall pipe Mitigation 1

Site-specific

Frequency Loss of Containment

1.00E-06

FLOC/m

5.00E-09

0.01

0.1

Geohazard	Detail
-----------	--------

Category	/ Avulsion		KP (Rev V) S	KP (Rev V) Start 1110.36			
Source	Geotechnical Report		KP (Rev V)	End 1110.44			
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for t March 2010	the Enbridge Norther	n Gateway Project		
Legacy	Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	1		upper portion of fan, logg sediment supply. Condit				
Estimated Frequency	0.1	Fan morphology sugge check required.	est avulsion is possible, ho	owever, frequency dif	ficult to estimate. Field		
Vunerability Factor	0.001	Small stream.					
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for same chan	nel will require deep	cover.		

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment

1.00E-06 FLOC/m

1.25E-08

Geomazaru Delan	Geo	hazard	Detail
-----------------	-----	--------	--------

Category	Debris Flow		к	P (Rev V) Start	1110.36	Feature	134
Source	Geotechnica	l Report]	KP (Rev V) End	1110.44		
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the Enl	oridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	Headwater conditions catchment area - meet		-	, moderately ste	eep valley walls, si	gnificant
Estimated Frequency	0.1	Located in coast mount recommended.	tains with high	precipitaton, ap	pears vegetated	at crossing, field	check
Vunerability Factor	0.01	Deposition or erosion is approximate channel g					
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Stand	dard Factor
Deep buria							0.01
Mitigation Site-specific	1						

 Frequency Loss of Containment
 1.00E-06
 FLOC/m

Geohazard Detail

Category	Avulsion		KP (Rev V)	Start	1113.38	Feature	
Source	Geotechnica	l Report	KP (Rev V) End	1113.4		
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.01	Route crosses confined	d channel. Avulsion pote	ential is o	considered lo	ow. Field check required.	
Estimated Frequency	0.01	Morphology suggests a required.	avulsion is unlikely and t	herefor	e infrequent	if possible. Field check	
Vunerability Factor	0.001	Small stream.					
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for same char	nnel will	require deep	o cover.	

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-09
-------------------------------	----------

Geohazard	Detail
-----------	--------

ID 291 U

Category	Debris Flow		K	P (Rev V) Start	1113.38	Feature	134
Source	Geotechnica	al Report		KP (Rev V) End	1113.4		
		technical Report on the , Alberta to Kitimat, BC.	•	Rev. R for the En	bridge Northern	Gateway Project	
Legacy	🗌 Re	route 🗌 🛛 Google	Earth Filename				
Occurrence Factor	0.1	Headwater condition catchment area - me		•	· ·		ificant
Estimated Frequency	0.1	Located in Coast Mou recommended.	untains with hig	h precipitaton, aj	opears vegetated	d at crossing, field ch	eck
/unerability Factor	0.1	Transport Zone - Cha vicinity of the pipelin		t crossing with gr	adient approxim	nately 20° in the imm	ediate
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Standar	d Factor
Deep burial							0.01

Frequency Loss of Containment	
-------------------------------	--

1.00E-05 FLOC/m

Category	Debris Flow		КР	(Rev V) Start	1113.7	Feature	134
Source	Geotechnica	l Report	KF	P (Rev V) End	1113.8		
		echnical Report on the P Alberta to Kitimat, BC. N		ev. R for the En	bridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.01	Headwater conditions shallow sliding and sed potential - screening cr	liment accumula	tion in channel			ow
Estimated Frequency	0.01	Small catchment limits recommended.	frequency and r	magnitude appo	ears vegetated a	t crossing. Field check	
Vunerability Factor	0.1	Transport Zone - Route immediate vicinity of t		portion of fan w	/ith gradient app	proximately 24° in the	
Mitigation Options	1.00E-02	Deep burial					
Applied M	_					Standard	0.01
Mitigation Site-specific	1						

FLOC/m

Geoh	azard	Detail ID 414 North Side Kitimat River
Category	Slide - shallo	ow/moderate deep KP (Rev V) Start 1113.7 Feature
Source	Geotechnica	al Report KP (Rev V) End 1113.82
		Report KP (Rev V) End 1113.82 Chnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Iberta to Kitimat, BC. March 2010 ute Google Earth Filename Areas of shallow sliding and debris flows of overburden materials on sloping rock and within overburden materials aided by groundwater seepage. Documented occurence.
Legacy	🗌 Rer	route Google Earth Filename
Occurrence Factor	1	Areas of shallow sliding and debris flows of overburden materials on sloping rock and within overburden materials aided by groundwater seepage. Documented occurence.
Estimated Frequency	1	Expected to be relatively frequent.
Vunerability Factor	0.001	
Mitigation Options	1.00E-03	

Applied MitgationsStandard FactorMinor slope and crest grading0.1Drainage and groundwater control0.1Surface water control0.1

NALL and an	1
Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

Geoh	azard	Detail
------	-------	--------

Category	Avulsion		КР	(Rev V) Start	1114.04	Feature
Source	Geotechnica	l Report	К	P (Rev V) End	1114.12	
Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Pr Bruderheim, Alberta to Kitimat, BC. March 2010		ern Gateway Project				
Legacy 🗌 Reroute 🗌 Google Earth Filename						
Occurrence 0.1 Small steep gully, limited catchement and moderately well defined fan. Crossing near limits lateral extent of avulsion hazard.			d fan. Crossing near fan apex			
Estimated 0.01 Fan morphology suggest avulsion is possible, however, frequency difficult to est check required.		difficult to estimate. Field				
Vunerability Factor	0.001	Small stream				
Mitigation Options	1.00E-02	Note that debris flow i	mitigation for sa	ime channel wil	l require dee	p cover.

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

FLOC/m

1.25E-10

Category	Debris Flow		К	P (Rev V) Start	1114.04	Feature	134
Source	Geotechnica	al Report]	KP (Rev V) End	1114.12		
		technical Report on the P , Alberta to Kitimat, BC. N	•	Rev. R for the E	nbridge Northern	Gateway Project	
Legacy	🗌 Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.01	Headwater conditions shallow sliding and sed potential - screening cr	iment accumu	lation in chann		-	
Estimated Frequency	0.01	Small catchment limits recommended.	frequency and	d magnitude ap	pears vegetated a	at crossing. Field chec	k
Vunerability Factor	0.1	Transport Zone - Cross immediate vicinity of t	•	near apex of fan	with gradient ap	proximately 21° in th	e
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Standar	d Factor
Deep buria							0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment

FLOC/m 1.00E-07

Geohazard De	tail 1
---------------------	--------

Category	Avulsion		KP (Rev V) St	art 1114.68	Feature
Source	Geotechnical	l Report	KP (Rev V) I	End 1114.74	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for tl March 2010	ne Enbridge Northern	n Gateway Project
Legacy	Rer	oute 🗌 Google E	arth Filename		
Occurrence Factor	1		ed catchement with mode s of the fan appear to have		an, screening criteria met.
Estimated Frequency	0.1	Fan morphology sugge to estimate. Field chec		wever, frequency of o	channel switching is difficult
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for same chann	el will require deep c	cover.

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1.00E-06

FLOC/m

Geohazard Detail	
-------------------------	--

Category	Debris Flow		K	P (Rev V) Start	1114.68	Feature	134
Source	Geotechnica	l Report	k	(Rev V) End	1114.74		
		technical Report on the , Alberta to Kitimat, BC.	•	Rev. R for the En	bridge Northerr	n Gateway Project	
Legacy	Re Re	route 🗌 Google E	arth Filename				
Occurrence Factor	0.1	Headwater conditions catchment area - mee		-	t, moderately st	eep valley walls, sig	nificant
Estimated Frequency	0.01	Located in Coast Mou does not appear very	-	precipitaton, fie	eld check recom	mended. Vegetated	d channel
Vunerability Factor	0.1	Transport Zone - Chan approximately 23° in t				ossing with gradient	
Mitigation Options	1.00E-02	Deep burial					
Applied M	_					Stand	ard Factor
Deep buria							0.01

Site-specific

Frequency Loss of Containment

1.00E-06 FLOC/m

Geohazard	Detail
-----------	---------------

Category	Avulsion		KF	P (Rev V) Start	1114.86	Feature
Source	Geotechnica	l Report	k	(Rev V) End	1114.98	
		echnical Report on the F Alberta to Kitimat, BC. N	-	Rev. R for the En	bridge Northe	ern Gateway Project
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1	Crossing near fan apex moderately well define Screening criteria met	ed fan.	-		iment supply with a urred previously at location.
Estimated Frequency	0.01	No evidence of previou required.	us avulsion base	ed on initial stuc	ly, therefore lo	ow frequency. Field check
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for sa	ame channel wil	l require deep	cover.

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment1.00E-08

FLOC/m

Geo	hazard	Detail
-----	--------	--------

Category	Rockfall		KF	P (Rev V) Start	KP (Rev V) Start 1114.86				
Source	Geotechnica	l Report	k	KP (Rev V) End 1114.98					
		echnical Report on the F Alberta to Kitimat, BC. N	•	Rev. R for the En	bridge Nortl	nern Gateway Project			
Legacy	Rer	route 🗌 Google Ea	arth Filename						
Occurrence Factor	1	Apparently active rockfall located 250 m upslope with visible runout to 190 m from route. Located within the rockfall shadow. All screening criteria met, however, no obvious impact a route. Field review required.							
Estimated Frequency	0.1	Active source area, exp	oect occasional	rolling rock to c	ome down g	ully.			
Vunerability Factor	0.01	Route crosses fan with Expect rock to be dece			the immedia	te vicinity of the pipelin	le.		
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for sa	ame channel wil	l require dee	ep cover.			

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-05

FLOC/m

Geohazard	Detail
-----------	--------

Category	Debris Flow		КР (KP (Rev V) Start1114.86Feature					
Source	Geotechnical Report		КР	(Rev V) End	1114.98				
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010								
Legacy	Rei	route 🗌 🛛 Google	Earth Filename						
Occurrence Factor	0.1	Headwater conditions include: steep channel gradient, moderately steep valley walls, signific catchment area - meets screening criteria.							
Estimated Frequency	0.01	Located in Coast Mountains with high precipitaton, field check recommended. Vegetated channel does appear very active.							
Vunerability Factor	0.1	Transport Zone - Rou immediate vicinity o		ortion of fan w	vith gradient ap	proximately 20° in the	e		
Mitigation Options	1.00E-02	Deep burial.							
Applied M	_	L				Standar	d Factor		
Deep burial							0.01		

Mitigation	1
Site-specific	

-	
Frequency Loss of Containment	
Frequency Loss of Containment	

1.00E-06 FLOC/m

_				
Geo	hazard	Detail	ID	512

			_							
Category	Debris Flow		KP (Rev V) Start	1115.28	Feature	134				
Source	Geotechnica	l Report	KP (Rev V) End	1115.32						
		echnical Report on the I Alberta to Kitimat, BC.	Pipeline Route Rev. R for the E March 2010	Enbridge Northern	Gateway Project					
Legacy	Rei	route 🗌 Google E	arth Filename							
Occurrence Factor	0.01	0.01 Headwater conditions include: steep channel gradient, moderately steep valley walls, small catchment area limits debris flow potential - screening criteria only partially met.								
Estimated Frequency	0.01	Located in Coast Mountains with high precipitaton, field check recommended. Vegetated channel does not appear very active.								
Vunerability Factor	0.1	Transport Zone - Chan vicinity of the pipeline	nel confined at crossing with	gradient approxima	ately 28° in the immed	liate				
Mitigation Options	1.00E-02	Deep burial								
Applied M	itgations				Standard	Factor				
Deep burial						0.01				
Mitigation Site-specific	1									

Frequency Loss of Containment

1.00E-07

FLOC/m

Geohazard De	etail 🗉
--------------	---------

Category	Debris Flow		KF	P (Rev V) Start	1115.6	Feature	134	
Source	Geotechnica	l Report	KP (Rev V) End 1135.64					
		echnical Report on the P Alberta to Kitimat, BC. N	•	Rev. R for the En	bridge Northerr	a Gateway Project		
Legacy	Re Re	route 🗌 Google Ea	arth Filename					
Occurrence Factor								
Estimated Frequency	0.01	Located in Coast Mountains with high precipitaton, field check recommended. Vegetated channel does not appear very active.						
Vunerability Factor	0.1	Transport Zone - Chan vicinity of the pipeline.		crossing with gr	adient approxin	nately 20° in the imm	nediate	
Mitigation Options	1.00E-02	Deep burial						
Applied M	itgations					Standa	rd Factor	
Deep buria							0.01	
Mitigation Site-specific	1							

Frequency Loss of Containment

1.00E-07 FLOC/m

4.98E-12

ID 25 **U**

Category	Avulsion		KP (Rev V) Start	1116.28	Feature	
Source	Geotechnica	l Report	KP (Rev V) End	1116.6		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the E March 2010	nbridge Northern	Gateway Project	
Legacy	Rer	route 🗌 Google E	Earth Filename			
Occurrence Factor	0.1	Route crosses mid-point of moderately well defined fan, screening criteria met, however, no evidence of occurrence at this location. Requires field review.				
Estimated Frequency	0.01	Fan morphology sugg check required.	est avulsion is possible, howeve	er, frequency diffi	cult to estimate. Field	
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same channel w	ill require deep co	over.	

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

ion	1	
-specific		

Frequency Loss of Containment	1.00E-08	
-------------------------------	----------	--

4.00E-11

FLOC/m

Geo	hazard	Detail
-----	--------	--------

Category	Rockfall		KP (Rev V) Start	1116.28	Feature	135	
Source	Geotechnica	l Report	KP (Rev V) End	1116.6			
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge North	ern Gateway Project		
Legacy	Reroute Google Earth Filename						
Occurrence Factor	0.1	Gully with some steep sidewalls which may act as potential source areas. Route located near the edge of rockfall shadow zone. Field check required.				ear the	
Estimated Frequency	0.01	No evidence of previo check required.	ous rockfall impacting pipline cor	ridor, expect	low frequency, howev	er, field	
Vunerability Factor	0.01	Route crosses fan wit Expect rock to be dec	h slope of approximately 22° in t elerating and rolling.	he immediat	e vicinity of the pipelin	е.	
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same channel wil	l require deep	o cover.		

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-07
Frequency Loss of Containment	1.00E-07

FLOC/m

Geohazard	Detail
------------------	--------

Category	Avalanche		KP (R	ev V) Start	1116.28	Feature	e 132
Source	Geotechnica	l Report	KP (I	Rev V) End	1116.6		
		echnical Report on the I Alberta to Kitimat, BC.	•	R for the En	bridge North	iern Gateway Project	
Legacy	🗌 Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	0.01	Bear Enterprises repor route. "It is unlikely to could be due to snow occurrence near this lo	reach the alignmen avalanches, but als	nt, but the ve	egetation clo	se to it showed dama	age that
Estimated Frequency	0.001	Treed slope, frequency	y of large avalanche	e expected to	be low.		
Vunerability Factor	0.001	Deposition zone - 21°					
Mitigation Options	1.00E-02	Note that debris flow	mitigation for same	channel wil	l require dee	ep cover.	
Applied M	itactions					Stop	dard Eactor

Applied Mitgations	Standard Factor
Deep burial	0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-10
-------------------------------	----------

FLOC/m

Upper Kitimat River valley

Category	Debris Flow		KP (Rev V) Start	1116.28	Feature	134
Source	Geotechnica	l Report	KP (Rev V) End	1116.6		
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project	
Legacy	Rei	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1		include: steep channel gradien liment accumulation in channe			
Estimated Frequency	0.1	Located in coast moun channel. Field check re	tains with high precipitaton, pa commended.	artially vegetated	at crossing. Active	
Vunerability Factor	0.1	Transport Zone - Route immediate vicinity of t	e crosses upper portion of fan v he pipeline.	vith gradient app	proximately 22° in the	
Mitigation Options	1.00E-02	Deep burial.				
Applied M	litgations				Standard	Factor
Deep buria	l					0.01
Mitigation Site-specific	1					

Frequency Loss of Containment

1.00E-05

FLOC/m

Category	Debris Flow			KP (Rev V) Start	1117.16	Feature	134
Source	Geotechnica	l Report		KP (Rev V) End 1117.28			
		technical Report on the , Alberta to Kitimat, BC		e Rev. R for the En	bridge Northern	Gateway Project	
Legacy	Re Re	route 🗌 🛛 Google	Earth Filename	2			
Occurrence Factor	0.1	Headwater condition shallow sliding and s screening criteria.		-		alls with potential for hment area - meets	
Estimated Frequency	0.01	Located in Coast Mo required.	untains with hig	gh precipitaton, a	opears vegetated	d at crossing, field che	ck
/unerability Factor	0.1	Transport Zone - Rou immediate vicinity or		er portion of fan v	vith gradient app	proximately 18° in the	
Mitigation Options	1.00E-02	Deep burial.					
Applied M	itgations					Standard	Factor
Deep burial							0.01

Mitigation	1	1
Site-specific		

Frequency Los	s of Containment	
---------------	------------------	--

FLOC/m 1.00E-06

Geoł	nazard	Detail
------	--------	--------

Catagony	Avulsion		KP (Rev V) Start	1117.94	Feature					
Category	Avuision		KP (KeV V) Start	1117.94	Feature					
Source	Geotechnical	l Report	KP (Rev V) End	1118.36						
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the En March 2010	bridge North	ern Gateway Project					
Legacy	Rer	oute 🗌 Google E	arth Filename							
Occurrence	0.1	Route crosses mid por	tion of fan below active gully sy	stem expecte	ed to contribute significant					
Factor		sediment. Former dist met with no defined o	ributary channels not observed ccurrence at location.	on LiDAR (Ma	arch 2012). Screening criteria					
Estimated Frequency	0.01	No evidence of previou required.	lo evidence of previous avulsion based on initial study despite fan morphology. Field check equired.							
Vunerability Factor	0.001	Small stream.								
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for same channel wil	l require deer	p cover.					

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment1.00E-08

B FLOC/m

2.50E-11

Category	Debris Flow			(P (Rev V) Start	1117.94	Feature 134
Source	Geotechnica	al Report		KP (Rev V) End	1118.36	
			on the Pipeline Route at, BC. March 2010	Rev. R for the En	bridge Northern	Gateway Project
Legacy	Re	route 🗌 🛛 Go	oogle Earth Filename			
Occurrence Factor	0.1		and sediment accum	-		lls with potential for nment area - meets
Estimated Frequency	0.01	Located in Coast required.	t Mountains with hig	h precipitaton, a	ppears vegetated	at crossing, field check
/unerability Factor	0.1		- Route crosses mide ity of the pipeline.	lle portion of fan	with gradient app	proximately 15° in the
Mitigation Options	1.00E-02	Deep burial.				
Applied M	itgations					Standard Factor
Deep burial						0.01

Mitigation	1	1
Site-specific		

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

FLOC/m

2.50E-09

Category	Debris Flow		КР	(Rev V) Start	1119.36	Feature	134
Source	Geotechnica	l Report	K	P (Rev V) End	1119.52		
Legacy	Bruderheim,	echnical Report on the P Alberta to Kitimat, BC. N route 🗌 Google Ea		ev. R for the En	bridge Northern	Gateway Project	
Occurrence Factor	0.1	Headwater conditions i shallow sliding and sed screening criteria.					
Estimated Frequency	0.1	Located in Coast Moun check recommended.	tains with high	precipitaton, a	ppears partially v	egetated at crossing	3. Field
Vunerability Factor	0.1	Transport Zone - Route the pipeline.	crosses fan wit	h gradient app	roximately 15° in	the immediate vicir	nity of
Mitigation Options	1.00E-02	Deep burial.					
Applied M	litgations					Standa	rd Factor
Deep buria							0.01
Mitigation Site-specific	1						

Frequency Loss of Containment	
-------------------------------	--

1.00E-05

FLOC/m

<u> </u>		
Geohazard De	tail	
(1800/7/2/0/1)8		!

Category	Avulsion		KP (Rev V) Start1119.38Feature				
Source	Geotechnica	l Report	К	KP (Rev V) End 1119.6			
		echnical Report on the Alberta to Kitimat, BC.	•	ev. R for the Enb	ridge Northe	rn Gateway Project	
Legacy	Rer	route 🗌 Google E	Earth Filename				
Occurrence Factor	1	Route crosses mid-po Requires field review		y well defined fa	n. Former cha	annel visible on LiDAR.	
Estimated Frequency	0.1	Based on the apparen avulsion frequency is			is flow, avalar	nche) of upslope channel,	
Vunerability Factor	0.001	Small stream.					
Mitigation Options	1.00E-02	Note that debris flow	mitigation for sa	me channel will	require deep	cover.	

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1

Category	Rockfall			к	P (Rev V) Start	1119.44	Feature	135
Source	Geotechnica	l Report		I	KP (Rev V) End	1120.24		
			ort on the Pi itimat, BC. N		Rev. R for the En	bridge Northerr	Gateway Project	
Legacy	Rer	route 🗌	Google Ea	rth Filename				
Occurrence Factor	0.1	source are	as. Section bo	•	llies also potenti	•	may correspond to i ockfall and talus depo	
Estimated Frequency	0.01		ce of previous eld check req		acting pipline co	rridor, expect lov	<i>w</i> frequency expecte	ed.
Vunerability Factor	0.01			slope of appro erating and rc		the immediate v	icinity of the pipeline	e.
Mitigation Options	1.00E-02	Deep buria	l plus additic	onal protectio	n depending on	results of field cl	neck.	

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01

Frequency Loss of Containment	1.00E-07
-------------------------------	----------

Geohazard	Detail
-----------	--------

Category	Avulsion		KP (Rev V) Start	1120	Feature
Source	Geotechnical	Report	KP (Rev V) End	1120.62	
		echnical Report on the F Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the E March 2010	nbridge Norther	n Gateway Project
Legacy	Rer	oute 🗌 🛛 Google Ea	arth Filename		
Occurrence Factor	0.1	Stream lacks confinem defined occurrence. Re	ent at crossing on a moderate equires field check.	ly well defined f	an. Credible potential but no
Estimated Frequency	0.01	No evidence of previou required.	us avulsion based on initial stu	dy, therefore, lo	w frequency. Field check
Vunerability Factor	0.001	Small stream.			
Mitigation Options	1.00E-02	Note that debris flow r	nitigation for same channel w	ill require deep o	cover.

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

FLOC/m

Category	Debris Flow		КІ	P (Rev V) Start	1120	Feature	134
Source	Geotechnica	l Report	KP (Rev V) End 1120.62				
Legacy	Bruderheim,	echnical Report on the P Alberta to Kitimat, BC. N route Google Ea		Rev. R for the En	bridge Northern (Gateway Project	
		_					
Occurrence Factor	0.1	Headwater conditions shallow sliding and sed screening criteria.		-			
Estimated Frequency	0.1	Located in Coast Moun check recommended.	tains with high	precipitaton, ap	ppears partially ve	getated at crossin	ng. Field
Vunerability Factor	0.1	Transport Zone - Route the pipeline.	e crosses fan wi	th gradient appr	oximately 15° in t	the immediate vic	inity of
Mitigation Options	1.00E-02	Deep burial					
Applied M	itgations					Standa	ard Factor
Deep buria							0.01
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-05	FLOC/m
-------------------------------	----------	--------

1.67E-08

Geohazard	Detail
-----------	--------

ID 366 Upper

Category	Lateral Migr	ation	KP (Rev V) Start	1120.9	Feature 136
Source	Geotechnica	l Report	KP (Rev V) End	1121.4	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En 1arch 2010	bridge Northern	Gateway Project
Legacy	✓ Re	route 🗌 🛛 Google Ea	rth Filename		
Occurrence Factor	0		ding laterally toward the loggin bank. The route was previously		
Estimated Frequency	0.001	Route is 150m from Kit	imat River (relocated in past).		
Vunerability Factor	0.001	80m wide channel.			
Mitigation Options	1.00E+00	Mitigated by previous r	eroute subject to check during	detailed design	
Applied M	litgations				Standard Factor
Mitigation Site-specific	1				

 Frequency Loss of Containment
 0.00E+00

FLOC/m 0.00E+00

Geohazard	Detail
-----------	--------

Category	Avulsion		KI	P (Rev V) Start	1121.22	Feature			
Source	Geotechnical	Report	ŀ	(Rev V) End	1121.34				
		echnical Report on the F Alberta to Kitimat, BC. N		Rev. R for the En	bridge North	ern Gateway Project			
Legacy	Legacy 🗌 Reroute 🗌 Google Earth Filename								
Occurrence Factor	0.1	Crossing at upper portion of a small, moderately well-defined forested fan. Morphology suggests avulsion is possible but no defined occurrence, requires review.							
Estimated Frequency	0.001	Fan morphology sugge check required.	ests avulsion is p	oossible, howev	er, frequency	difficult to estimate. Field			
Vunerability Factor	0.001	Small stream.							
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for sa	ame channel wil	l require deep	o cover.			

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1.00E-09
-------------------------------	----------

FLOC/m

Geohazard [Detail
-------------	--------

Category	Debris Flow		KP (Rev V) Start 1121.22			Feature	134	
Source	Geotechnica	l Report		KP (Rev V) End 11	21.34			
		echnical Report on the F Alberta to Kitimat, BC. I	•	Rev. R for the Enbrid	ge Northern Gatew	ay Project		
Legacy	Rei	route 🗌 Google E	arth Filename					
Occurrence Factor	0.1	Headwater conditions catchment area - meet		_	oderately steep val	ley walls, signi	ficant	
Estimated Frequency	0.01	Located in coast moun recommended.	ocated in coast mountains with high precipitaton, vegetated at crossing, field check recommended.					
Vunerability Factor	0.01	Deposition or erosion gradient of 11° in the i		-	es the fan with an a	approximate c	hannel	
Mitigation Options	1.00E-02	Deep burial.						
Applied M	itgations					Standar	d Factor	
Deep buria							0.01	
Mitigation Site-specific	1							

Frequency Loss of Containment 1.00E-07

FLOC/m

Caa	h a - a r d	Datail	[
Geo	hazard	Detail	ID	30

Category	Avulsion		KP (Rev V) Start	1121.94	Feature			
Source	Geotechnical	l Report	KP (Rev V) End	1122.1				
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for the E March 2010	nbridge Northern	Gateway Project			
Legacy	Rer	oute 🗌 Google E	arth Filename					
Occurrence Factor	1	Route crosses the middle section of a well defined, vegetated fan.						
Estimated Frequency	0.1	Channel is not deeply i required.	incised with possible former c	hannels visible on	LiDAR image. Field check			
Vunerability Factor	0.001	Small stream.						
Mitigation Options	1.00E-02	Note that debris flow i	mitigation for same channel w	vill require deep co	over.			

Applied Mitgations Sta	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1
Site-specific	

Frequency Loss of Containment	1

Geohazard	Detail
-----------	--------

Category	Debris Flow			KP (Rev V) Start	1121.94	Feature	134
Source	Geotechnica	l Report		KP (Rev V) End	1122.1		
			on the Pipeline Ro at, BC. March 201	ute Rev. R for the En 0	bridge Northern	Gateway Project	
Legacy	Re Re	route 🗌 🛛 G	oogle Earth Filena	me			
Occurrence Factor	0.1		nditions include: st a - meets screenin		t, moderately ste	eep valley walls, signif	ficant
Estimated Frequency	0.01	Located in coa recommended		high precipitaton, ve	egetated at cross	ing, field check	
Vunerability Factor	0.1			ome confinement up ate vicinity of the pip		ssing with gradient	
Mitigation Options	1.00E-02	Deep burial.					
Applied M	-					Standard	
Deep buria							0.01

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-06

FLOC/m

Geohazard	Detail	11
-----------	--------	----

D 51

Category	Rockfall		KP (Rev V) Start	1126.12	Feature	135
Source	Geotechnica	l Report	KP (Rev V) End	1128.26		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the E March 2010	nbridge North	ern Gateway Project	
Legacy	Rer	route 🗌 🛛 Google Ea	arth Filename			
Occurrence Factor	1		ed terrain upslope with expose e crossing route. Route locat			ockfall.
Estimated Frequency	0.01	No evidence of previou check required.	us rockfall impacting pipline of	orridor, expect	low frequency, howev	er, field
Vunerability Factor	0.01	Low relief terrain imme rolling.	ediately surrounding route. Ex	kpect rock frag	ments to be decelerati	ng and
Mitigation Options	1.00E-02					
					Chanda	

Applied Mitgations Sta	indard Factor	
Deep burial (established on max particle impact energy) and/or extra compaction	0.01	

Mitigation	1
ite-specific	

Frequency Loss of Containment	1.00E-06
ricquerie, 2000 or containinent	1005 00

FLOC/m

5.00E-10

Geohazard Detail

Category	Avulsion		KP (Rev V)	Start	1127.48	Feature
Source	Geotechnica	l Report	KP (Rev V	End	1127.82	
		echnical Report on the F Alberta to Kitimat, BC. I	Pipeline Route Rev. R for March 2010	the En	bridge Northe	ern Gateway Project
Legacy	Rer	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	0.1	Route crosses near toe	e of forested alluvial fan.			
Estimated Frequency	0.01	Paritially vegetated far review recommended.		hanne	ls or indicatio	ns of activity/frequency, field
Vunerability Factor	0.001	Small stream.				
Mitigation Options	1.00E-02	Note that debris flow r	mitigation for same chan	nel will	l require deep) cover.

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth along alluvial fan impact area	0.01

Mitigation	1	
Site-specific		_

Frequency Loss of Containment	1.00E-08
-------------------------------	----------

2.50E-11

Geohazard Detail ID 303

Category	Debris Flow		KF	P (Rev V) Start	1127.48	Feature	
Source	Geotechnica	l Report	K	(Rev V) End	1127.82		
		echnical Report on the F , Alberta to Kitimat, BC. I		Rev. R for the Er	ibridge Northerr	Gateway Project	
Legacy	Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.1	Headwater conditions shallow sliding and sec screening criteria.					
Estimated Frequency	0.01	Located in Coast Mour recommended.	ntains with high	precipitaton, v	egetated at cros	sing, field check	
Vunerability Factor	0.01	Deposition or erosion approximate channel g				prtion of the fan with an peline.	
Mitigation Options	1.00E-02	Deep burial.					
Applied M	litgations					Standard Fac	ctor
Deep buria						0.0	01
Mitigation Site-specific	1						

Frequency Loss of Containment	1.00E-07
-------------------------------	----------

FLOC/m

2.50E-10

azard Detail ID	367 Chist Cree	k		
Lateral Migration	KP (Rev V) Star	t 1128.26	Feature	137
Geotechnical Report	KP (Rev V) End	1128.6		
Overall Geotechnical Report on the P Bruderheim, Alberta to Kitimat, BC. N	-	Enbridge Northern (Gateway Project	
] Reroute 🗌 Google Ea	arth Filename			
1 Braided channel with a of crossing.	active bar depostion/erosion	and relocation acro	ss floodplain downstre	am
0.1 Possible lateral erosion	n west of bridge from bend u	pstream.		
0.01 40 m wide channel. Hig	gh mobility increases vulnera	bility.		
1.00E-02 HDD crossing proposed	d.			
1.00E-0	2 HDD crossing proposed	2 HDD crossing proposed.	2 HDD crossing proposed.	2 HDD crossing proposed.

Applied Mitgations	Standard Factor
Armoured stream banks suitably designed	0.01

Mitigation	1
Site-specific	T
Site-specific	

Frequency Loss of Containment	1.00E-05	FLOC/m	2.94E-08

Geon	azard	Detail ID	489 Chist Creek				
Category	Scour		KP (Rev V) Start 1128.26 Feature 137				
Source	Geotechnica	l Report	KP (Rev V) End 1128.6				
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	1	Unconsolidated river b	ed material expected at crossing location.				
Estimated Frequency	0.01	Frequency of significan return period.	t scour events correspond to high runoff events typically 25 to 200 year				
Vunerability Factor	0.001	40 m wide channel.					
Mitigation Options	1.00E-03	HDD crossing proposed].				

Applied Mitgations St	andard Facto	r
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation 1
te-specific

2.94E-11

Frequency Loss of Containment	1.00E-08	FLOC/m	

Geoh	azard	Detail ID 514	Cecil Creek	
Category	Scour		KP (Rev V) Start 1136.68	Feature
Source	Assessment	based on review of avai	KP (Rev V) End 1136.74	
Legacy	Re	route 🗌 Google Earth Filenai	me	
Occurrence Factor	1	Unconsolidated river bed materia	l expected at crossing location.	
Estimated Frequency	0.01	Frequency of significant scour ever return period.	ents correspond to high runoff events	s typically 25 to 200 year
Vunerability Factor	0.001	15 m wide channel.		
Mitigation Options	1.00E-03	Bored crossing proposed.		

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

Mitigation	1
Site-specific	

1.00E-10

Frequency Loss of Containment	1.00E-08	FLOC/m

Geo	hazard	Detail	ID	415

Eastern flank on Iron Mountain

Category	Slide - shallo	w/moderate deep	KP (Rev V) S	Start 1140.62	Feature 143		
Source	Geotechnica	Geotechnical Report KP (Rev V) End 1149.52					
		echnical Report on the P Alberta to Kitimat, BC. N		the Enbridge Northe	rn Gateway Project		
Legacy	🗌 Rei	route 🗌 Google Ea	rth Filename				
Occurrence Factor	0.1				in localized areas below fined occurence at location.		
Estimated Frequency	0.0004		s ground acceleration (Por responds to a 1:2500 re				
Vunerability Factor	0.1	Potential for large scale	e events with movement	across pipeline.			
Mitigation Options	1.00E+00	Reroute off areas of clay onto lower rock slopes of Iron Mountain if required. Further investigation is recommended.					
Applied M	itgations				Standard Factor		
Mitigation Site-specific	1						

Frequency Loss of Containment

4.00E-06

FLOC/m

4.49E-10

Geohazard	Detail ID
-----------	-----------

429 Eastern

Category	Lateral Spre	eading	KP (Rev V) Start1140.62Feature				
Source	Geotechnic	al Report	KP (Rev V) End	1149.52			
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010						
Legacy	✓ Re	eroute 🗌 Google	e Earth Filename				
Occurrence Factor	0	Hazard considered u	under shallow to moderately deep	o seated sliding.			
		about 200 m elevati	spreading and induced sliding in a ion. Considered credible potential ocation. Possible static or seismic	l for sliding with n			
Estimated Frequency	0	Hazard considered u	under shallow to moderately deep	o seated sliding.			
			eak ground acceleration (PGA) is corresponds to a 1:2500 return p		,		
Vunerability Factor	0	Hazard considered u	under shallow to moderately deep	o seated sliding.			
Factor		Route located on ea	astern flank of Iron Mountain with	slopes greater th	an 5°.		
Mitigation Options	1.00E+00	Hazard considered u	under shallow to moderately deep	o seated sliding.			
- piere		Mountain flank to tl	avoid areas prone to lateral spre he west. Alternate reroute along i nd drilling investigation is require	ridge in middle of	Kitimat River Valley.		
Applied M	litgations				Standard	Factor	

Frequency Loss of Containment

0.00E+00

FLOC/m

0.00E+00

Geo	hazard	Detail	ID	416

Eastern flank on Iron Mountain

Category	Slide - shallo	w/moderate deep	KP (Re	/ V) Start	1141	Feature	139
Source	Geotechnica	Geotechnical Report KP (Rev V) End 1142.6					
		echnical Report on the P Alberta to Kitimat, BC. N	•	for the Enk	oridge Northeri	n Gateway Project	
Legacy	✓ Rer	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0	Already considered une	der shallow to mode	erate slide h	azard for overl	apping KP.	
		Potential slope stability recommended. Conside Possible static or seism	ered credible poten				ation.
Estimated Frequency	0	Already considered une No indication of direct					
Vunerability Factor	0	Already considered une Potential for larger sca				apping KP.	
Mitigation Options	1.00E+00	Reroute off marine clay	y deposits if require	d by results	of further stud	ly.	
Applied M	litgations					Standar	d Factor

Mitigation	1
Site-specific	

Frequency Loss of Containment

0.00E+00 FLOC/m

0.00E+00

Geohazard	Detail	ID
-----------	--------	----

Category	Rockfall		KP (Rev V) Start	1142.4	Feature	141
Source	Geotechnica	al Report	KP (Rev V) End	1142.52		
		technical Report on the P , Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge North	ern Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	1	Documented occurren	ce at this location.			
Estimated Frequency	0.1	Documented occurren	ce, considered relatively freque	ent.		
Vunerability Factor	0.1	Route crosses area tha	t has been subject to dicrect ro	ockfall.		
Mitigation Options	1.00E-03	Deep cover berms and	/or other protection as require	d		

52

Applied Mitgations Standard Factor Deep burial (established on max particle impact energy) and/or extra compaction 0.01 Diversion berm 0.1

Frequency Loss of Containment

1.00E-05

FLOC/m

1.00E-07

Site-specific

Geohazard Detail	Geo	hazard	Detail	ID
------------------	-----	--------	--------	----

Category	Rockfall		К	P (Rev V) Start	1148.6	Feature	144
Source	Geotechnica	l Report		KP (Rev V) End	1148.7		
		-	ort on the Pipeline Route timat, BC. March 2010	Rev. R for the En	bridge North	ern Gateway Project	
Legacy	Rer	oute 🗌	Google Earth Filename				
Occurrence Factor	1	Documente	d occurrence at this locat	ion.			
Estimated Frequency	0.1	Documente	d occurrence, considered	relatively freque	ent.		
Vunerability Factor	0.1	Route cross	es area that has been sub	ject to dicrect ro	ckfall.		
Mitigation Options	1.00E-03	Deep cover	and berms and/or additic	onal protection a	s required.		

53

Applied Mitgations Standard Factor Deep burial (established on max particle impact energy) and/or extra compaction 0.01 Diversion berm 0.1 Mitigation 1 Site-specific 1

Frequency Loss of Containment

1.00E-05 FLOC/m

1.00E-07

Geohazard	Detail ID
------------------	------------------

417 **North**

Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start	1148.7	Feature	146					
Source	Geotechnica	ll Report	KP (Rev V) End	1149.1							
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010									
Legacy	Re	route 🗌 Google Ea	arth Filename								
Occurrence Factor	0.1	hillshade maps (poor q	derately deep slides in glaciom uality) suggest that there may l location with no defined occurr	be marine clay sl	ides. Considered cree						
Estimated Frequency	0.01	No indication of direct	occurrence on route. Expected	to be moderately frequent.							
Vunerability Factor	0.01	Potential for larger scal	le event and movement across	pipeline.							
Mitigation Options	1.00E+00	Reroute to North and V determine if reroute is	Nest if required. Suggest furthe required.	r field review to	assess hazard and						
Applied M	litgations				Standard	d Factor					
Mitigation Site-specific	1										

Frequency Loss of Containment 1.00E-05

FLOC/m

1.11E-08

Geohazard	Detail
-----------	--------

ID 72 No

Category	Deep seated	l slide	KP (Rev V) Start	1149	Feature	145
Source	Geotechnica	l Report	KP (Rev V) End	1149.7		
		echnical Report on the P Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the Enl March 2010	bridge Northern	Gateway Project	
Legacy	✓ Rei	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0	Deep-seated slide east record from previous re	of route, however, route was c oute revision.	hosen to miss ar	rea. Considered legacy	/
Estimated Frequency	0	Deep-seated slide east record from previous re	of route, however, route was c oute revision.	hosen to miss ar	rea. Considered legacy	/
Vunerability Factor	0	Deep-seated slide east record from previous re	of route, however, route was c oute revision.	hosen to miss ar	rea. Considered legacy	/
Mitigation Options	1.00E+00	Further reroute possibl	le if required based on further i	nvestigation.		
Applied M	litgations				Standard	Factor
Mitigation Site-specific	1					

Frequency Loss of Containment0.00E+00

FLOC/m

0.00E+00

Geohazard I	Detail
-------------	--------

ID 430 **We**

Wedeene River area

Category	Lateral Spre	ading		KP (Rev V) Start	1149.52	Feature	147		
Source	Geotechnica	l Report							
		Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	🗌 Rei	route 🗸	Google Earth Filer	ame					
Occurrence Factor	0.1	about 200 n	n elevation. Conside	nd induced sliding in s red credible potential sible static or seismic	for sliding with n				
Estimated Frequency	0.0004			acceleration (PGA) is a ls to a 1:2500 return p		,	I		
Vunerability Factor	1	Route prima	arily crosses low ang	le slopes <5° with loca	alized areas up to	approximately 15°.			
Mitigation Options	1.00E-02	Use routing sensitive cla		to avoid sensitive cla	ys. Further invest	igation required for			

Applied Mitgations	Standard Factor
Reroute to avoid areas of sensitive clays	0.01

Mitigation	1	1
Site-specific		

FLOC/m

1.43E-10

Frequency Loss of Containment	4.00E-07
-------------------------------	----------

Geoh	azard	Detail ID 490 Wedeene River
Category Source	Scour Assessment	KP (Rev V) Start1150.08Featurebased on review of avaiKP (Rev V) End1150.14
Legacy	Re	route 🗌 Google Earth Filename
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
inerability Factor	0.1	50m wide channel.
Vitigation Options	1.00E-03	HDD crossing proposed.

Applied Mitgations

Standard Factor

Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement 0.001

2.86E-09

Slide - shallo	w/moderat	e deep	к	P (Rev V) Start	1150.18	Feature	146
Geotechnica	l Report			KP (Rev V) End	1150.38		
				Rev. R for the En	bridge Northern G	ateway Project	
] Rer	route 🗌	Google Ea	rth Filename				
1	Shallow to	moderately	deep slides or	n west side of Wa	adeene River.		
0.01	Slides may	be inactive.					
0.001							
1.00E-03	HDD cross	ing proposed					
gations						Standard	Facto
	Geotechnica Dverall Geot Bruderheim, 1 0.01 0.001 1.00E-03	Geotechnical Report Overall Geotechnical Rep Bruderheim, Alberta to H Reroute 1 Shallow to 0.01 Slides may 0.001 1.00E-03 HDD cross gations	Overall Geotechnical Report on the Pi Bruderheim, Alberta to Kitimat, BC. M Reroute Google Ead 1 Shallow to moderately of 0.01 Slides may be inactive. 0.001 1.00E-03 HDD crossing proposed.	Geotechnical Report Overall Geotechnical Report on the Pipeline Route Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 1 Shallow to moderately deep slides or 0.01 Slides may be inactive. 1.00E-03 HDD crossing proposed. gations	Geotechnical Report KP (Rev V) End Overall Geotechnical Report on the Pipeline Route Rev. R for the En Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 1 Shallow to moderately deep slides on west side of Wa 0.01 Slides may be inactive. 0.001 HDD crossing proposed.	Geotechnical Report KP (Rev V) End 1150.38 Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern G Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 1 Shallow to moderately deep slides on west side of Wadeene River. 0.01 Slides may be inactive. 0.001 HDD crossing proposed.	Geotechnical Report KP (Rev V) End 1150.38 Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010 Reroute Google Earth Filename 1 Shallow to moderately deep slides on west side of Wadeene River. 0.01 Slides may be inactive. 1.00E-03 HDD crossing proposed. Standard

Mitigation	1
Site-specific	

1.43E-11

Frequency Loss of Containment	1.00E-08

29-Jan-13 Filter:

-				
Geo	hazard	Detail	חו	73
JUU	Indeala	Detail	שו	15

Category	Deep seated	l slide	KF	P (Rev V) Start	1150.6	Feature 14	45
Source	Geotechnica	l Report	К	P (Rev V) End	1154.5		
	Bruderheim,	echnical Report on the P Alberta to Kitimat, BC. N	Aarch 2010	Rev. R for the Enb	oridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google Ea	arth Filename				
Occurrence Factor	0.01	Deep-seated slide appr	oximately 100	m north-west of	route.		
Estimated Frequency	0.001	No slides on route, very	y low frequency	y of occurence.			
Vunerability Factor	1	Slopes steeper than an	gle of residual 1	friction.			
Mitigation Options	1.00E+00	Reroute possible if nee	ded, HDD cross	ing proposed.			
Applied M	itgations					Standard Fact	or
Mitigation Site-specific	1						

2.56E-09

Category	Slide - shalle	ow/moderate deep	KP (Rev V) Start	1152.32	Feature	149
Source	Geotechnica	al Report	KP (Rev V) End	1155.82		
		technical Report on the Pi , Alberta to Kitimat, BC. N	peline Route Rev. R for the En Iarch 2010	bridge Northern (Gateway Project	
Legacy	✓ Re	route 🗌 Google Ea	rth Filename			
Occurrence Factor	0	Hazard considered unde	er Lateral Spreading			
Estimated Frequency	0	Hazard considered unde	er Lateral Spreading			
unerability Factor	0	Hazard considered unde	er Lateral Spreading			
Mitigation Options	1.00E+00	Hazard considered unde	er Lateral Spreading			
Applied M	litgations				Standard	Factor

0.00E+00

Geohazard Detail ID 431

1 Little

Little Wedeene River Area

Category	Lateral Spre	ading		КР	(Rev V) Start	1152.32	Feature	148
Source	Geotechnica	al Report		KP (Rev V) End 1155.82				
			ort on the Pipe itimat, BC. Ma		ev. R for the Er	bridge Northe	ern Gateway Project	
Legacy	🗌 Re	route 🗸	Google Eart	h Filename				
Occurrence Factor	0.1	about 200	m elevation. C	onsidered cre	0	l for sliding wi	in localized areas belo th no defined occurren	
Estimated Frequency	0.0004				ration (PGA) is L:2500 return p		ecessary to trigger later Kitimat area.	al
Vunerability Factor	0.1	Route cross	ses low angle s	slopes <5°				
Mitigation Options	1.00E-02			-	id areas prone vestigation req		eading. Possible rerout itive clays.	e along

Applied MitgationsStandard FactorReroute to avoid areas of sensitive clays0.01

Mitigation	1	
Site-specific		

Frequency Loss of Containment	4.00E-08

FLOC/m

1.14E-11

Geohazard	Dotail		
Geonazaro	Deran	ID	420
UCUINENI M	DCCAII		720

Little Wedeene River North terrace face

Category	Slide - shallo	w/moderate deep		(P (Rev V) Start	1153.74	Feature	150
]	· · _			100
Source	Geotechnica	l Report		KP (Rev V) End	1153.86		
		echnical Report on the Pi Alberta to Kitimat, BC. N	•	Rev. R for the Ent	oridge Northern G	ateway Project	
Legacy	🗌 Rei	route 🗌 Google Ea	rth Filename				
Occurrence Factor	1	Shallow instabilities ide occurrence of glacioma		race slopes. Revie	w slope stability r	elative to the possi	ble
Estimated	0.1	Expected to be relative	ly frequent				
Frequency	0.1		iy nequent.				
Vunerability Factor	0.001						
Mitigation	1.00E-02						
Options							
Applied M	litgations					Standard	l Factor
Major slope	e and crest gra	ding					0.01
Mitigation Site-specific	1						

Fraguency Loss of Containment	
Frequency Loss of Containment	

1.00E-06 FLOC/m

9.99E-09

_	-			
Geoha	azard	Detail	ID	368

Category	Lateral Migr	ation	KP (Rev V) Start	1154.1	Feature	151
Source	Geotechnica	l Report	KP (Rev V) End			
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the Enl March 2010	oridge Northern	Gateway Project	
Legacy	Rer	route 🗌 🛛 Google E	arth Filename			
Occurrence Factor	1	Braided/anastamosing	g channel with abandoned chanr	nel 500m to the s	south.	
Estimated Frequency	0.01	Abandoned channel d based on preliminary	oes not appear to be recently ac review.	ctive but re-occu	pation appears possi	ble
Vunerability Factor	0.1	50 m wide channel.				
Mitigation Options	1.00E-03	Bored crossing propos vulnerable area.	sed. Regardless of method used,	pipeline to be b	elow depth of scour a	across
Applied M	itgations				Standard	d Factor

Trenchless Methods enter/exit outside extents of lateral migration	0.001

Mitigation	1
Site-specific	

Frequency Loss of Containment	1.00E-06
-------------------------------	----------

1.43E-09

-				
Geo	hazard	Detail	ID	491

Category	Scour		K	P (Rev V) Start	1154.1	Feature	151
Source	Geotechnica	l Report		KP (Rev V) End	1154.86		
		echnical Report on the Alberta to Kitimat, BC		Rev. R for the En	bridge Northeri	n Gateway Project	
Legacy	Rer	route 🗌 🛛 Google	Earth Filename				
Occurrence Factor	1	Unconsolidated river	r bed material ex	pected at crossir	ng location.		
Estimated Frequency	0.01	Frequency of signific return period.	ant scour events	correspond to h	igh runoff even	ts typically 25 to 200) year
Vunerability Factor	0.1	50 m wide channel.					
Mitigation Options	1.00E-03	Bored crossing propo	osed.				

Applied Mitgations Sta	andard Factor	•
Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movement	0.001	

Mitigation	1
Site-specific	

1.54E-09

Frequency Loss of Containment	1.00E-06	FLOC/m
-------------------------------	----------	--------

Geoh	azard	Deta	ail id	421	Kitimat Are	a		
Category	Slide - shallo	w/modera	te deep	K	P (Rev V) Start	1155.82	Feature	153
Source	Geotechnica	l Report]	KP (Rev V) End	1177.62		
			port on the P Kitimat, BC. N		Rev. R for the E	nbridge Northerr	n Gateway Project	
Legacy	✓ Rer	oute	Google Ea	rth Filename				
Occurrence Factor	0	Hazard co	nsidered und	er Lateral Spr	eading			
Estimated Frequency	0	Hazard co	nsidered und	er Lateral Spr	eading			
Vunerability Factor	0	Hazard co	nsidered und	er Lateral Spr	eading			
Mitigation Options	1.00E+00	Hazard co	nsidered und	er Lateral Spr	eading			
Applied N	litgations						Standard	Factor
Mitigation Site-specific	1							

Kitimat Area

Category	Lateral Sprea	ading	KP (Rev V) Start	1155.82	Feature	152
Source	Geotechnical Report		KP (Rev V) End	1177.62		
		echnical Report on the Alberta to Kitimat, BC.	Pipeline Route Rev. R for the En March 2010	bridge Northe	ern Gateway Project	
Legacy	Rer	route 🗹 Google E	arth Filename			
Occurrence Factor	0.1	about 200 m elevation	preading and induced sliding in s n. Considered credible potential ation. Possible static or seismic	for sliding wi		
Estimated Frequency	0.0004	-	ak ground acceleration (PGA) is o prresponds to a 1:2500 return p			al
Vunerability Factor	1	Route primarily crosse	es low angle slopes <5° with loca	alized areas up	o to approximately 15°.	
Mitigation Options	1.00E-02	0	reas prone to lateral spreading. ast of the current alignment. Fur		0 0	
Applied M	itgations				Standar	d Factor
Reroute to	avoid areas of	sensitive clays				0.01
Mitigation Site-specific	1					

1.83E-11

FLOC/m

Geohazard Detail

369 West of

ID

			а		ſ	
Category	Lateral Migra	ation	KP (Rev V) Start	1158.8	Feature	154
Source	Geotechnica	l Report	KP (Rev V) End	1160		
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the En Aarch 2010	bridge North	ern Gateway Project	
Legacy	Rer	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1	Route situated on sides distance 500m, elevation	slope above the Kitimat River. I on is similar.	Route closest	to stream at KP1158 -	lateral
Estimated Frequency	0.01	Further review of latera	al erosion conditions of adjace	nt Kitimat Riv	ver is recommended.	
Vunerability Factor	0.1	140m wide channel.				
Mitigation Options	1.00E-02	Relocation if required b	by further study. Buried self lau	Inching riprap	p could also be conside	red.

Applied MitgationsStandard FactorRiver training measures suitably designed0.01Reroute0.01

Mitigation	100	Select only reroute or riprap, mitigations are not multiplicative.
Site-specific		

Frequency	Loss of	Containment
-----------	---------	-------------

1.00E-06

FLOC/m

6.67E-10

litigation	1.00E-02	River training measures if required by further study. Possible relocation.
Options		

Applied Mitgations	Standard Factor
River training measures suitably designed	0.01
Reroute	0.01

Mitigation	100	Select only reroute or river training, mitigations are not multiplicative.
Site-specific		

Frequency Loss	of Containment
----------------	----------------

Geohazard Detail ID 370

FLOC/m 1.00E-05

1.11E-08

Category	Lateral Migr	ation	ŀ	(P (Rev V) Start	1164	Feature	155
Source	Geotechnica	al Report		KP (Rev V) End	1164.64		
		-	t on the Pipeline Route nat, BC. March 2010	Rev. R for the En	bridge Nort	hern Gateway Project	
Legacy	Re	route 🗹 🛛	Google Earth Filename				
Occurrence Factor	1		d beside the Kitimat Riv eral distance 50m.	ver on outside be	nd. Section	closest to stream near	
Estimated Frequency	0.01	Further review		ditions and exist	ting riprap o	f adjacent Kitimat River is	
Vunerability Factor	0.1	140m wide ch	nannel.				
Mitigation Options	1.00E-02	River training	measures if required b	y further study. F	Possible relo	cation.	

Category	Lateral Migr	ation	KP (Rev V) Start 1169.1 Feature 156				
Source							
Source	Geotechnical ReportKP (Rev V) End1169.26Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 20101169.26						
Legacy	🗌 Rei	route 🗌 Google E	arth Filename				
Occurrence Factor	0.1	Failure of existing dike lateral erosion	es and stream training installations to be further considered –might result in				
Estimated Frequency	0.01	Frequency dependent	on the design, condition and maintenance of stream training structures.				
/unerability Factor	0.001	25m wide channel.					
Mitigation Options	1.00E+00	Relocation or augmen	tation of existing structures if required.				
Applied M	itgations		Standard Factor				
Mitigation Site-specific	1						

	1	~ f	Containment	
Frequency	LOSS	01	Containment	

1.00E-06 FLOC/m

6.67E-09

Geoh	azard Detail	ID 492	Anderson Creek				
Category	Scour		KP (Rev V) Start	1169.1	Feature	156	
Source	Geotechnical Report		KP (Rev V) End	1169.26			
	Overall Geotechnical Report o Bruderheim, Alberta to Kitima	•		bridge Northern (Gateway Project		

Legacy	Re	route Google Earth Filename
Occurrence Factor	1	Unconsolidated river bed material expected at crossing location.
Estimated Frequency	0.01	Frequency of significant scour events correspond to high runoff events typically 25 to 200 year return period.
Vunerability Factor	0.001	25m wide channel.
Mitigation Options	1.00E-03	

Applied Mitgations	Standard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

Frequency Loss of Containment	1.00E-08	FLOC/m	6.67E-11

Geoh	azard	Deta	il id	54	Moore Creek					
Category	Rockfall				KP (Rev V) Start 1170.38	Feature				
Source	Geotechnica	l Report			KP (Rev V) End 1170.5					
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Proje Bruderheim, Alberta to Kitimat, BC. March 2010									
Legacy	Rer	oute	Google E	arth Filena	me					
Occurrence Factor	0.1	Rockfall fro	m steep ca	nyon walls.	Aerial crossing above rockfall hazar	d.				
Estimated Frequency	0.01	Rockfall fro	m steep ca	nyon walls.	Aerial crossing above rockfall hazard	d.				
Vunerability Factor	0	Rockfall fro	m steep ca	nyon walls.	Aerial crossing above rockfall hazard	d.				
Mitigation Options	1.00E+00	Aerial cross	ing above ı	rockfall haz	ard.					
Applied M	litgations					Standard Factor				
Mitigation Site-specific	1									

Frequency Loss of Containment	0.00E+00	FLOC/m	0.00E+00	
L				

Category	Debris Flow				KP (Rev V) Start	1170.38	Feature 15		
Source	Geotechnica	l Report			KP (Rev V) End	1170.5			
	Overall Geotechnical Report on the P Bruderheim, Alberta to Kitimat, BC. N				Pipeline Route Rev. R for the Enbridge Northern Gateway Project March 2010				
Legacy	Rei	route 🗌	Google E	arth Filena	me				
Occurrence Factor	0.1	Aerial cro	ssing above	debris flow.					
Estimated Frequency	0.01	Aerial cro	ssing above	debris flow.					
/unerability Factor	0	Aerial cro	ssing above	debris flow.					
Mitigation Options	1.00E-03	Aerial cro	ssing propos	ed.					
Applied M	itgations						Standard Fact		
Aerial cross	ing						0.001		

ion 1

0.00E+00

Frequency Loss of Containment	0.00E+00	FLOC/m

Geohazard	Detail
-----------	--------

ID 55

Category	Rockfall		KP	P (Rev V) Start	1171.92	Feature	161
Source	Geotechnica	l Report] K	(Rev V) End	1173.64		
		echnical Report on the P Alberta to Kitimat, BC. N		Rev. R for the En	bridge Northerr	n Gateway Project	
Legacy	Rer	oute 🗌 Google Ea	orth Filename				
Occurrence Factor	1	Steep till slopes above i located within rockfall s Field check required.		-		· /	
Estimated Frequency	0.1	Documented release of above route require as				ute. Potential source	e areas
Vunerability Factor	0.1	Route crosses slopes of rock to be rolling or bo		/ 25-27° in the ir	nmediate vicini	ty of the pipeline. Ex	pect
Mitigation Options	1.00E-04	Mitigative options to be	e finalized base	ed on detailed to	errain condition	S.	

Applied Mitgations	Standard Factor
Deep burial (established on max particle impact energy) and/or extra compaction	0.01
Concrete coating or protection	0.1
Diversion berm	0.1

Frequency Loss of Containment	

1.00E-06 FLOC/m

6.25E-10

Category	Slide - shallo	w/moderate	e deep		KP (Rev V) Start	1172.52	Feature	160
Source	Geotechnical Report				KP (Rev V) End 1176.72			
		echnical Repo Alberta to Ki			e Rev. R for the E	nbridge Northern (Gateway Project	
Legacy	🗌 Rei	route 🗌	Google Ea	rth Filenam	e			
Occurrence Factor	1	Steeply slop shallow sur		bedrock-co	ntrolled, numero	us small gullies or r	avines and occasion	al
Estimated Frequency	1							
'unerability Factor	0.001							
Mitigation	1.00E-03							

- -

Applied Mitgations Sta		
Major slope and crest grading	0.01	
Drainage and groundwater control	0.1	

Mitigation	1
-	-
Site-specific	

Frequency Loss of Containment	1.00E-06	

FLOC/m

2.38E-10

Geohazard Detail ID 305

West side of Kitimat Arm

Category	Debris Flow		KP (Rev V) Start	1174.48	Feature	162
Source	Geotechnical Report KP (KP (Rev V) End	P (Rev V) End 1174.66		
		echnical Report on the P , Alberta to Kitimat, BC. N	Pipeline Route Rev. R for the En March 2010	bridge Northern	Gateway Project	
Legacy	Re	route 🗌 Google Ea	arth Filename			
Occurrence Factor	0.1		include: steep channel gradien liment accumulation in channe ets screening criteria.			W
Estimated Frequency	0.01	Located in Coast Mour recommended.	ntains with high precipitaton, d	iscontinuous fore	sted channel, field chec	k
Vunerability Factor	0.01		s expect on route which crosse ne immediate vicinity of the pi		lled channel with gradie	nt
Mitigation Options	1.00E-02					
Applied M	itgations				Standard Fa	actor
Deep burial					0	.01
Mitigation Site-specific	1					

Frequency Loss of Containment

9.99E-10

FLOC/m

Geohazard Detail ID 3

Category	Lateral Migra	ation	KP (Rev	V) Start 1174.48	Feature	163	
Source	Geotechnica	l Report	KP (Rev V) End 1174.66				
	Overall Geot		ipeline Route Rev. R	for the Enbridge Northern	Gateway Project		
Legacy	Rer	oute 🗌 Google Ea	rth Filename				
Occurrence Factor	0.01	Channel is well incised	and does not show e	vidence of previous signifi	cant lateral erosion.		
Estimated Frequency	0.001	Channel is well incised Frequency expected to		vidence of previous signifi	cant lateral erosion.		
Vunerability Factor	0.001	10 m wide channel.					
Mitigation Options	1.00E+00						
Applied M	itgations				Standarc	l Factor	
Mitigation Site-specific	1						

9.99E-11

1.00E-08

Frequency Loss of Containment

Geohazard Detail		
Geonazaru Delan	UI ID	57
		•

Category	Rockfall		KP (Rev V) Start	1175.4	Feature 161
Source	Geotechnica	l Report	KP (Rev V) End	1175.8	
		echnical Report on the P Alberta to Kitimat, BC. N	ipeline Route Rev. R for the Enk March 2010	oridge Northern Ga	iteway Project
Legacy	✓ Rer	route 🗌 Google Ea	arth Filename		
Occurrence Factor	0	Pipeline route is upslop	be of possibe rockfall source.		
Estimated Frequency	0	Pipeline route is upslop	be of possibe rockfall source.		
Vunerability Factor	0	Pipeline route is upslop	be of possibe rockfall source.		
Mitigation Options	1.00E+00				
Applied N	litgations				Standard Factor
Mitigation Site-specific	1				

0.00E+00

Frequency Loss of Containment 0.00E+00

Geohazard	Detail
------------------	--------

Category	Scour		K	P (Rev V) Start	1175.48	Feature	163	
Source	Geotechnical Report		ŀ	ርP (Rev V) End	1174.66			
	Overall Geotechnical Report on the Pipeline Route Rev. R for the Enbridge Northern Gateway Project Bruderheim, Alberta to Kitimat, BC. March 2010							
Legacy	Rer	route 🗌 🛛 Google E	arth Filename					
Occurrence Factor	1	Unconsolidated river b	oed material exp	oected at crossin	g location.			
Estimated Frequency	0.01	Frequency of significar return period.	nt scour events	correspond to hi	gh runoff ev	ents typically 25 to 20	0 year	
Vunerability Factor	0.001	10m wide channel.						
Mitigation Options	1.00E-03	Note that debris flow	mitigation for sa	ame channel will	require dee	p cover.		

Applied Mitgations St	andard Factor
Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	0.001

tigation	1	
e-specific		

Frequency Loss of Containment	1.00E-08

9.99E-11

	Geo	hazard	Detail
--	-----	--------	--------

ID 56

Category	Rockfall		KP (Rev V) Start 1175.76 Feature 161						
Source	Geotechnica	l Report	KP (Rev V) End 1177.3						
		echnical Report on the P Alberta to Kitimat, BC. N	-	the Enbridge Norther	n Gateway Project				
Legacy	Rei	route 🗌 Google Ea	orth Filename						
Occurrence Factor	0.01	Moderately steep till sl Route is not within rocl design - screening crite	kfall shadow. Rockfall fr						
Estimated Frequency	0.001	Frequency considered	very low.						
Vunerability Factor	0.01	Low to moderate relief decelerating and rolling			ect rock fragments to	be			
Mitigation Options	1.00E+00								
Applied M	itgations				Standar	d Factor			
Mitigation Site-specific	1								

Frequency Loss of Containment

1.00E-07 FLOC/m

7.69E-11

Geoh	azard	Deta	і і ір	58	Kitimat	Termina	al		
Category	Rockfall				KP (Rev V)	Start 11	177.6	Feature	170
Source	Geotechnica	l Report			KP (Rev V)) End 11	L77.6		
	Overall Geot Bruderheim,					the Enbridg	e Northern	Gateway Project	
Legacy	✓ Rei	route 🗌	Google E	arth Filena	me				
Occurrence Factor	0	Gentle reli	ef in nearby	y area to KP	, rockfall wou	ld only be ai	n issue in cu	ts.	
Estimated Frequency	0	Gentle reli	ef in nearby	y area to KP	, rockfall wou	ld only be ai	n issue in cu	ts.	
Vunerability Factor	0	Gentle reli	ef in nearby	y area to KP	, rockfall wou	ld only be ai	n issue in cu	ts.	
Mitigation Options	1.00E+00								
Applied M	litgations							Stand	ard Factor
Mitigation Site-specific	1								

Frequency Loss of Containment	0.00E+00	FLOC/m	
L.			

Geoh	azard	Deta	ail id	74	Kitimat Terr	ninal		
Category	Deep seated	l slide			KP (Rev V) Start	1177.6	Feature	166
Source	Geotechnica	l Report			KP (Rev V) End	1177.6		
	Overall Geot Bruderheim,				te Rev. R for the En	bridge Northern	Gateway Project	
Legacy	Re Re	route 🗌	Google E	arth Filenam	ne			
Occurrence Factor	0	No deep-s	eated slide	at end of pip	eline.			
Estimated Frequency	0	No deep-s	eated slide	at end of pip	eline.			
/unerability Factor	0	No deep-s	eated slide	at end of pip	eline.			
Mitigation Options	1.00E+00							
Applied M	litgations						Standard	Factor
Mitigation Site-specific	1							

Frequency Loss of Containment	0.00E+00	FLOC/m		
-------------------------------	----------	--------	--	--

Geoh	azard	Deta	il id	306	Kitimat Teri	minal		
Category	Debris Flow			I	KP (Rev V) Start	1177.6	Feature	169
Source	Geotechnica	l Report			KP (Rev V) End	1177.6		
			oort on the Pij Kitimat, BC. M		e Rev. R for the Er	nbridge Northerr	n Gateway Project	
Legacy	✓ Rei	route 🗌	Google Ear	th Filename				
Occurrence Factor	0							
Estimated Frequency	0							
Vunerability Factor	0							
Mitigation Options	1.00E+00							
Applied M	litgations						Standard	l Factor
Mitigation Site-specific	1							

Frequency	Loss of Containment
-----------	---------------------

0.00E+00 FLOC/m

Geoh	azard	Detail ID	423 Kitima	t Terminal	
Category	Slide - shallo	ow/moderate deep	KP (Rev V) Start 1177.6	Feature 165
Source	Geotechnica	l Report	KP (Rev)	V) End 1177.6	
		echnical Report on the P Alberta to Kitimat, BC. N		r the Enbridge Northerr	n Gateway Project
Legacy	✔ Rer	route 🗌 Google Ea	arth Filename		
Occurrence Factor	0	No shallow to moderat	ely deep seated slides	are present at route.	
Estimated Frequency	0	No shallow to moderat	ely deep seated slides	are present at route.	
Vunerability Factor	0	No shallow to moderat	ely deep seated slides	are present at route.	
Mitigation Options	1.00E+00				
Applied M	litgations				Standard Factor
Mitigation Site-specific	1				

Frequency Loss of Containment 0.	00E+00 FLOC/m		
----------------------------------	---------------	--	--

_				
Geo	hazard	Detail	ID	433

Kitimat Terminal

Category	Lateral Spre	ading	KP (Rev V) Start 1177.6 Feature 16						
Source	Geotechnica	l Report	К	(Rev V) End	1177.6				
		echnical Report on the Alberta to Kitimat, BC.		Rev. R for the En	bridge Northern	Gateway Project			
Legacy	Rei	route 🗹 Google E	arth Filename						
Occurrence Factor	0.01	Facilities to be located have been done to fac		-	t fine-grained so	ils. Detailed investiga	tions		
Estimated Frequency	0.0004	An estimated 12% pea spreading. This PGA co				,	1		
Vunerability Factor	1	Slopes near KP1177.6	approximately 5	5-7°.					
Mitigation Options	1.00E-02	Facilities to be located have been done to fac		-	t fine-grained so	ils. Detailed investiga	tions		
Applied M	itgations					Standar	d Factor		
Reroute to	avoid areas of	f sensitive clays					0.01		
Mitigation Site-specific	1								
			363	3 Records					

Frequency Loss of Containment

4.00E-08 FLOC/m

APPENDIX C

Mitigation Summary

KP Start	KP End	ID	Location	FLOC
2.58	3	434	North Saskatchewan River	
			Scour	1.00E-06
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
62.8	62.96	326	Riviere Qui Barre	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Design should address meander bend east of crossing.	
130.78	131.06	436	Pembina River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
137.18	137.48	516	Paddle River East valley slope	
			Slide - shallow/moderate deep	1.00E-06
			Monitoring of slope stability conditions	
			Major slope and crest grading	
137.4	137.66	437	Paddle River	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
162.82	163.18	329	Little Paddle River	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Route crosses meander bend at KP 162.9. Reroute to avoid this meander bend should be evaluated.	
177.52	183.94	59	Swan Hills southeast of Whitecourt	
			Deep seated slide	1.00E-06
			Monitoring of slope stability conditions	
			Surface water and/or groundwater control	
183.5	183.8	530	Swan Hills Area East of Whitecourt	
			Slide - shallow/moderate deep	1.00E-08
			Reroute	
			Proposed reroute to the east beyond retrogression limits.	

KP Start KP	End	ID	Location	FLOC
186.18 1	.87.02	439	Athabasca River	
·		[Scour	1.00E-06
		ŀ	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
187 1	87.14	374	North approach to Athabasca River	
		[Slide - shallow/moderate deep	1.00E-06
			Deep burial below slide	
			HDD crossing proposed entering below north valley slope.	
198.75	199.1	527	East approach slope to Sakwatamau River	
		[Deep seated slide	1.00E-05
			Major slope and crest grading	
			Reroute	
			Although slides appear to be prevalent in the area, it may be possible to micro-route through stable group between slides. Grading and/or surface/groundwater control is also recommended.	und
199.06 2	00.16	331	Sakwatamau River	
		[Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
200.16 2	02.26	375	Narrow corridor near Sakwatamau River	
([Slide - shallow/moderate deep	1.00E-06
		I.	Reroute	
			Reroute recommended subject to check that Alliance RoW boundary is at the crest of slides. Possible reroute across and to the west side of Alliance. Tight area between RoW and highway, room for reroute is dependant on further checks.	
215.16 2	15.56	376	Tributary to Chickadee Creek valley slopes	
		[Slide - shallow/moderate deep	1.00E-07
		_	Drainage and groundwater control	
			Minor slope and crest grading	
			Minor slope grading and drainage/groundwater control recommended.	
218.46 2	18.62	441	Chickadee Creek	
		[Scour	1.00E-08
		F	Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	

KP Start	KP End	ID	Location	FLOC
241.2	242.4	442	Two Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
241.5	241.65	528	East of Two Creek	
			Slide - shallow/moderate deep	0.00E+00
			Reroute	
			Requires re-route beyond the depletion zone.	
241.65	241.85	529	East approach slopes of Two Creek	
			Slide - shallow/moderate deep	0.00E+00
			Minor slope and crest grading	
			Drainage and groundwater control	
			grading, surface/groundwater control and possible riprap	
257.96	258.2	377	East approach slope to losegun River	
			Slide - shallow/moderate deep	1.00E-07
			Minor slope and crest grading	
			Drainage and groundwater control	
			Minor slope grading and drainage/groundwater control recommended.	
258.2	258.48	334	losegun River	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
258.48	259.06	426	West approach slope to losegun River	
			Slide - shallow/moderate deep	1.00E-08
			Minor slope and crest grading	
			Drainage and groundwater control	
			Surface water control	
			Grading and groundwater/surface water control. Route crosses small diameter pipeline which must b considered. Relocation of route may be required.	e
289.7	290.1	61	East Approach to Little Smoky River	
			Deep seated slide	1.00E-06
			Surface water and/or groundwater control	
			Monitoring of slope stability conditions	
			River training and/or riprap	
			Monitoring of stability conditions and rip rap or stream training subject to detailed studies. Ground an water control.	nd surface

KP Start	KP End	ID	Location	FLOC
289.72	290.02	378	East Approach slope to Little Smoky River	
			Slide - shallow/moderate deep	1.00E-07
		,	Reroute	
			Drainage and groundwater control	
			Monitoring of slope stability conditions	
			Surface water control	
			Reroute may be required either driven by this, or other nearby geohazards. Further investigations and monitoring are recommended to check movement status of slopes. Further consideration of design an mitigative methods relative to stability conditions is anticipated during detailed design. Comprehensive and surface water control will be required. Vulnerable to undercutting by lateral erosion.	
			FLOC calculated based on either reroute or combination of water control and monitoring.	
290.02	290.56	444	Little Smoky River crossing	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements or reroute	
			Trenchless Methods enter/exit outside extents of lateral migration or reroute	
			Trenchless crossing preferred to mitigate deep seated slide. Trenchless crossing should start near toe or approach slope extending under river and west approach slope.	feast
290.6	291.1	62	West Approach Slope to Little Smoky River	
			Deep seated slide	1.00E-05
			Surface water and/or groundwater control	
			Deep burial below slide or reroute	
			Trenchless crossing preferred to mitigate deep seated slide. Trenchless crossing should start near toe of approach slope extending under river and west approach slope.	feast
317.1	317.9	445	Waskahigan River	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
331.64	331.76	446	Incised creek valley draining to north	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Streams have relatively steep gradients. Pipeline cover should consider further potential scour and dov conditions during detailed design.	vncutting
334.5	334.58	447	Incised creek valley draining to north	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Streams have relatively steep gradients. Pipeline cover should consider further potential scour and dov conditions during detailed design.	vncutting

KP Start	KP End	ID	Location	FLOC
337.9	338.36	337	Deep Valley Creek	
			Lateral Migration	1.00E-07
		,	Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
338.78	339.42	517	Deep Valley Creek West valley slopes	
			Deep seated slide	1.00E-05
			Deep burial below slide or reroute	
			Monitoring of slope stability conditions	
			Recommend reroute or trenchless crossing. Route should parallel existing pipelines which climb the val just to the east of the slide margins.	ley slope
339.86	340.06	518	Tributrary to Deep Valley Creek East valley slopes	
			Slide - shallow/moderate deep	1.00E-05
			Drainage and groundwater control	
			Monitoring of slope stability conditions	
			Monitoring and drainage. Recommend field reconnaisance and drill program to install instrumentation 2012. May require trenchless crossing (HDD).	summer
340.06	340.22	449	Tributary to Deep Valley Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
340.06	340.222	338	Tributary to Deep Valley Creek	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
340.22	340.34	519	Tributrary to Deep Valley Creek West valley slopes	
			Slide - shallow/moderate deep	1.00E-05
			Drainage and groundwater control	
			Monitoring of slope stability conditions	
			Monitoring and drainage. Recommend field reconnaisance and drill program to install instrumentation 2012. Monitoring and drainage. Recommend that field reconnaisance and drill program to install instrumentation summer 2012. May require trenchless crossing (HDD).	summer
340.34	341	520	West of Tributary to Deep Valley Creek	
5-0.54	341		Slide - shallow/moderate deep	1 005 07
			Reroute	1.00E-07
			Requires reroute further back from crest of valley slopes.	
244	244.42	F 24	Reroute beyond possible retrogression limits of slides. Nearby slides have failed to 6°.	
341	341.42	521	Creek crossing west of tributary to Deep Valley Creek	
			Slide - shallow/moderate deep	1.00E-06
			Reroute	

KP Start	KP End	ID	Location	FLOC
			Recommend reroute approximately 700 m upstream where valley is much smaller and any potential in can be graded out.	stabilities
			Recommend reroute approximately 700 m upstream where valley is much smaller and any potential in can be graded out.	stabilities
341.32	341.34	522	Creek crossing west of tributary to Deep Valley Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
353.56	353.58	450	Tributaries to Simonette	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Tributary streams have relatively steep gradients. Pipeline cover should consider further potential score downcutting conditions during detailed design.	ur and
354.58	354.62	451	Tributaries to Simonette	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Tributary streams have relatively steep gradients. Pipeline cover should consider further potential score downcutting conditions during detailed design.	ur and
355.18	355.22	452	Tributaries to Simonette	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Tributary streams have relatively steep gradients. Pipeline cover should consider further potential score downcutting conditions during detailed design.	ur and
356.38	356.4	453	Tributaries to Simonette	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Tributary streams have relatively steep gradients. Pipeline cover should consider further potential sco downcutting conditions during detailed design.	ur and
357.26	357.32	454	Tributaries to Simonette	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Tributary streams have relatively steep gradients. Pipeline cover should consider further potential score downcutting conditions during detailed design.	ur and
358.94	359.46	455	Simonette River	
			Scour	1.00E-06
		I	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	F
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	

KP Start KP En	nd ID)	Location	FLOC
370.94 371	1.28	63	East valley slope of Latornell River	
		 [Deep seated slide	1.00E-06
		F	Deep burial below slide or reroute	
			Recommend reroute to avoid slide hazard or trenchless crossing.	
			Recommend reroute to avoid slide hazard or trenchless crossing.	
371.26 37	71.3	340	Latornell River	
		Ī	Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long term hydrotechnical limits. Reroute may be required to mitigate slides on app slopes.	broach
371.3	372	495	West valley slope of Latornell River	
			Deep seated slide	1.00E-06
		_	Deep burial below slide or reroute	
			Recommend reroute or HDD.	
			Recommend reroute or HDD.	
372.1	374	64	West of Latornell River	
			Deep seated slide	1.00E-05
			Reroute	
			Subject to further work, reroute is assumed, crossing over to the west side of Alliance.	
395.02 395	5.22	380	Tributary to Smoky River valley slopes	
			Slide - shallow/moderate deep	1.00E-06
			Drainage and groundwater control	
			Minor slope and crest grading	
			Minor slope grading and drainage/groundwater control.	
395.1 395	5.12	457	Tributary to Smoky River	
		Γ	Scour	1.00E-08
		_	Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
403.58 403	3.96	381	Tributary to Smoky River valley slopes	
			Slide - shallow/moderate deep	1.00E-09
			Minor slope and crest grading	
			Drainage and groundwater control	
			Minor slope grading and drainage/groundwater control recommended.	
419.4 41	19.9	382	East valley slope of Smoky River	
			Slide - shallow/moderate deep	1.00E-08
			Drainage and groundwater control	

KP Start	KP End	ID	Location	FLOC
			Minor slope and crest grading	
			Minor slope grading and drainage/groundwater control recommended.	
419.5	419.9	65	East valley slope of Smoky River	
·			Deep seated slide	1.00E-06
		I.	Reroute	
			Reroute. There appears to be about 150 m setback from the existing pipeline to the north, providing ro shift the alignment at least 50 m farther away from the slide scarp. The route should parallel the south the existing RoW except at the crest where the route will deviate around a lease.	
420.18	421.74	458	Smoky River floodplain	
		[Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits or channel movements	F
			Armoured stream banks suitably designed	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
421.7	422.28	66	West valley slope of Smoky River	
		[Deep seated slide	1.00E-05
			Reroute	
			Monitoring of slope stability conditions	
			Requires reroute to north close to road. Monitoring of stability conditions recommended.	
428.16	429.52	384	Big Mountain Creek valley slopes	
			Slide - shallow/moderate deep	1.00E-05
			Reroute or HDD	
			Recommend reroute or HDD.	
428.92	429.28	460	Big Mountain Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
446.4	446.76	385	Bald Mountain Creek west valley slopes	
		[Slide - shallow/moderate deep	1.00E-08
			Surface water control	
			Drainage and groundwater control	
			Minor slope and crest grading	
			Ground and surface water control. Grading will reduce the potential for occurrence.	
446.64	446.72	461	Bald Mountain Creek	
		[Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	

KP Start	KP End	ID	Location	FLOC
453.66	453.86	346	Wilson Creek	
		ļ	Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
458.76	459	386	Tributary to Iroquois Creek valley slopes	
			Slide - shallow/moderate deep	1.00E-05
		ŀ	Drainage and groundwater control	
			Minor slope and crest grading	
			Minor slope grading and drainage/groundwater control recommended.	
470.84	471.08	387	Pinto Creek meander bend 1	
			Slide - shallow/moderate deep	1.00E-05
		L	Reroute	
			Reroute from south side to north of existing RoW.	
473	473.5	424	Pinto Creek meander bend 2	
			Slide - shallow/moderate deep	1.00E-05
		L	Reroute or HDD	
			Recommend reroute to North side of existing RoW or HDD.	
			-	
474.02	474.12	68	Pinto Creek East valley slope	
			Slide - shallow/moderate deep	1.00E-06
			Reroute or HDD	
			Recommend reroute or HDD. Requires further investigation for trenchless crossing. Possible microtunne HDD. Other option is to replace existing pipeline and perform extensive grading.	lling or
474.2	474.28	463	Pinto Creek	
			Scour	1.00E-08
		l	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements or reroute	
			Requires further investigation for trenchless crossing to mitigate scour potential. Recommend HDD or re	eroute.
474.34	474.44	427	Pinto Creek West valley slope	
			Slide - shallow/moderate deep	1.00E-05
			Reroute or HDD	
			Recommend reroute or HDD. Requires further investigation for trenchless crossing. Possible microtunne HDD. Other option is to replace existing pipeline and perform extensive grading.	lling or
494.94	495.6	464	Wapiti River	
			Scour	1.00E-07
		L	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			HDD crossing proposed.	

KP Start	KP End	ID	Location	FLOC
496.3	497	388	Ridge on West Side of Wapiti River	
			Slide - shallow/moderate deep	1.00E-06
			Monitoring of slope stability conditions	
			Surface water control	
			Drainage and groundwater control	
			Potential mitigative measures if there is an issue include routing, surface and ground water control ar event of major problems), consideration of deep grading, directional drilling or other methods.	d (in the
534.12	534.18	465	South Redwillow River	
			Scour	1.00E-09
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
568.2	568.26	466	Kinuseo Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
568.4	581.78	389	Quintette Mountain area rock cuts	
			Slide - shallow/moderate deep	1.00E-06
			Minor slope and crest grading	
			Suitable design for rock cuts includes grading and possible anchoring.	
577.3	577.46	4	Quintette Creek	
			Avulsion	1.00E-06
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
579.94	580.04	245	Tributary to Kinuseo Creek	
			Debris Flow	1.00E-08
			Deep burial	
582.16	583.1	246	Five Cabin Creek	
			Debris Flow	1.00E-05
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial.	
587.74	587.74	349	Kinuseo Creek near alignment	
			Lateral Migration	1.00E-06
			Reroute	
			Recommend reroute further to the north.	
588.86	589.6	497	Tributary to Kinuseo	
			Avulsion	1.00E-06
			Pipeline below maximum predicted scour depth along alluvial fan impact area	

KP Start	KP End	ID	Location	FLOC
590.3	590.68	428	Kinuseo Creek	
			Lateral Migration	1.00E-07
			Trenchless Methods enter/exit outside extents of lateral migration	
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements	
			Bored crossing proposed. Reroute to shorten length exposed to lateral erosion and scour should be evaluated.	
598.82	598.98	390	Tributary of Murray River	
			Slide - shallow/moderate deep	1.00E-05
			Reroute	
			Reroute to the north-east and away from crest of blow-off failure is assumed. Grading to consider stabil conditions.	ity
600.8	600.92	350	Murray River	
			Lateral Migration	1.00E-06
			Armoured stream banks suitably designed	
			Aerial crossing	
			Riprap of foundations and adjacent pipeline. Design of foundations.	
			Riprap of foundations and adjacent pipeline - 0.1. Foundation design - 0.01	
604.6	604.64	392	Hook Creek east approach slopes	
			Slide - shallow/moderate deep	1.00E-06
			Deep burial below slide	
			HDD crossing proposed.	
604.64	604.76	469	Hook Creek	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
604.76	604.8	545	Hook Creek west approach slope	
			Slide - shallow/moderate deep	1.00E-06
			Deep burial below slide	
			HDD below sliding surface	
623.55	623.7	33	Pass through Rockies	
			Rockfall	1.00E-06
			Diversion berm	
			Diversion berms to be installed where required.	

KP Start	KP End	ID	Location	FLOC
633.92	633.96	251	Tributary to Missinka River	
	·		Debris Flow	1.00E-08
		I	Deep burial	
635.06	635.12	252	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
637.14	637.2	253	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
638.48	638.64	7	Tributary to Missinka River	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep cover mitigation to be applied if required based on further review. Debris flow potential on fan n necessitate deep cover.	nay also
639.58	639.6	257	Tributary to Missinka River	
			Debris Flow	1.00E-08
			Deep burial	
			Deep burial	
643.38	643.46	470	Missinka River	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	f
			Bored crossing proposed.	
645.94	645.96	258	Tributary to Missinka River	
			Debris Flow	1.00E-08
			Deep burial	
646.7	647.24	259	Tributary to Missinka River	
			Debris Flow	1.00E-08
		I	Deep burial	
648.1	648.2	471	Missinka River	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	

KP Start	KP End	ID	Location	FLOC
652.1	652.56	260	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial may be required upon further review.	
655.1	655.22	261	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial.	
656.26	656.36	262	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial.	
659.66	659.76	263	Tributary to Missinka River	
			Debris Flow	1.00E-08
			Deep burial	
			Deep burial may be required upon further review.	
661.36	661.46	264	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial may be required upon further review.	
662.02	662.26	265	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial may be required upon further review.	
665.22	665.3	266	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial may be required upon further review.	
666.46	666.54	267	Tributary to Missinka River	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial may be required upon further review.	

KP Start	KP End	ID	Location	FLOC
673.6	674.14	472	Parsnip River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
705.66	705.86	494	Tributary to Chuchinka Creek	
			Lateral Migration	1.00E-07
			Sag bends beyond long-term hydrotechnical design limits	
712.66	713.16	401	Angusmac Creek East Valley Slope	
			Slide - shallow/moderate deep	1.00E-06
			Drainage and groundwater control	
			Major slope and crest grading	
			May require major grading and drainage/groundwater control.	
713.16	713.44	354	Angusmac Creek	
			Lateral Migration	1.00E-06
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
713.55	713.9	499	Angusmac Creek West Valley Slopes	
			Slide - shallow/moderate deep	1.00E-06
			Major slope and crest grading	
			Drainage and groundwater control	
			May require major grading and drainage/groundwater control.	
720.88	721.36	474	Crooked River	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	
750.8	750.9	475	Muskeg River	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	

KP Start	KP End	ID	Location	FLOC
765.44	765.9	476	Salmon River	
			Scour	1.00E-08
		I	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	
765.9	766.14	402	West valley slope of Salmon River	
			Slide - shallow/moderate deep	1.00E-06
			Major slope and crest grading	
			Drainage and groundwater control	
			Requires major grading and drainage/groundwater control.	
782.38	782.58	523	Tributary to Beaver Lake	
			Slide - shallow/moderate deep	1.00E-08
			Reroute	
			Recommend reroute around meander within corridor.	
818.92	819.32	403	Necoslie River valley slopes	
			Slide - shallow/moderate deep	1.00E-06
			Major slope and crest grading	
			Drainage and groundwater control	
			May require major grading and drainage/groundwater control.	
819.32	819.46	477	Necoslie River	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Bored crossing proposed.	
824.3	824.6	70	Stuart River East valley slope	
			Deep seated slide	1.00E-08
			Major slope and crest grading	
			Monitoring of slope stability conditions	
			HDD crossing proposed (won't mitigate). Monitoring of stability conditions and major slope and crest gra	nding.
824.76	825.08	478	Stuart River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			HDD crossing proposed.	
825	825.5	71	Stuart River West valley slope	
			Deep seated slide	1.00E-07
		I	Monitoring of slope stability conditions	

KP Start	KP End	ID	Location	FLOC
			HDD crossing proposed (won't mitigate). Monitoring of stability conditions and major slope a	nd crest grading.
825.02	825.08	404	Stuart River West valley slope	
		[Slide - shallow/moderate deep	1.00E-05
			Deep burial below slide	
			HDD crossing proposed. Trenchless crossing method to avoid shallow to moderately deep slide	e on west side.
			HDD expected to be significantly below area of potential sliding.	
859.24	859.4	524	Sutherland River East valley slope	
		[Slide - shallow/moderate deep	1.00E-06
			Reroute	
			Possible reroute to the north or south beyond extents of the slide.	
859.4	859.48	500	Sutherland River	
		[Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
951.2	951.58	515	Maxan Creek	
		[Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
977.34	977.96	405	Klo Creek East valley slopes	
			Slide - shallow/moderate deep	1.00E-07
			Major slope and crest grading	
			Drainage and groundwater control	
			Major grading and drainage/groundwater control.	
978.3	978.44	546	Klo Creek east approach Lower slopes	
		[Slide - shallow/moderate deep	1.00E-07
			Major slope and crest grading	
			Drainage and groundwater control	
978.44	978.68	479	Klo Creek	
			Scour	1.00E-08
		F	Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Sag bends beyond long-term hydrotechnical design limits	
978.68	978.72	501	Klo Creek West valley slopes	
		L	Slide - shallow/moderate deep	1.00E-07
		L	Drainage and groundwater control	
			Major slope and crest grading	
			Major grading and drainage/groundwater control.	

KP Start	KP End	ID	Location	FLOC
989.78	990.16	480	Buck Creek	
			Scour	1.00E-08
		I	Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	
1005.2	1005.4	481	Owen Creek	
			Scour	0.00E+00
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Bored crossing proposed.	
1006.58	1006.7	541	Owen Creek East Approach Slopes	
			Slide - shallow/moderate deep	1.00E-08
			Minor slope and crest grading	
			Surface water control	
			Drainage and groundwater control	
			For trench crossing grade slope and implement surface and groundwater controls. For trenchless crossin pipe below maximum possible slide depth.	ıg install
1006.7	1006.72	532	Owen Creek	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Deep burial across floodplain for trench crossing. Proposed bored crossing to extend below/beyond pote erosion limits.	ential
1006.7	1007.1	323	West of Owen Creek	
			Deep seated slide	0.00E+00
			Reroute	
			Reroute has been implemented	
1006.72	1006.8	543	Owen Creek West Approach Slopes	
			Slide - shallow/moderate deep	1.00E-08
			Minor slope and crest grading	
			Drainage and groundwater control	
			Consider grading and ground/surface water controls as required.	
1012.74	1012.78	534	Fenton Creek East Approach Slope	
			Slide - shallow/moderate deep	1.00E-09
			Surface water control	
			Minor slope and crest grading	
			Drainage and groundwater control	
			Grading and groundwater/surface water control. Deep burial.	

KP Start KP End ID	Location	FLOC
1012.78 1012.8 482	Fenton Creek	
	Scour	1.00E-08
	Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
	Sag bends beyond long-term hydrotechnical design limits	
1012.8 1012.86 542	Fenton Creek West Approach Slope	
	Slide - shallow/moderate deep	1.00E-09
	Minor slope and crest grading	
	Surface water control	
	Drainage and groundwater control	
	Grading, ground and surface water control. Set pipe below rupture surface.	
1018.36 1018.4 540	24.5 Mile Creek East approach slope	
	Slide - shallow/moderate deep	1.00E-08
	Minor slope and crest grading	
	Drainage and groundwater control	
	Surface water control	
	Grade slope, ground and surface water control.	
1018.4 1018.42 539	24.5 Mile Creek	
	Lateral Migration	1.00E-09
	Sag bends beyond long-term hydrotechnical design limits	
	Grade east slope to setback sagbend.	
1021 1022 406	Lamprey Creek East valley slopes	
· · · · · · · · · · · · · · · · · · ·	Slide - shallow/moderate deep	0.00E+00
	Drainage and groundwater control	
	Major slope and crest grading	
	May require major grading and drainage/groundwater control.	
1024.36 1024.66 537	Lamprey Creek East approach slope	
	Slide - shallow/moderate deep	1.00E-09
	Drainage and groundwater control	
	Major slope and crest grading	
	Surface water control	
	Major grading with surface and groundwater control. Route has been selected to avoid so north (downstream) of the proposed crossing towards the confluence with the Morice R	
1024.66 1024.84 483	Lamprey Creek	
	Scour	1.00E-08
	Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
	Sag bends beyond long-term hydrotechnical design limits	
	Burial below depth of scour.	

KP Start	KP End	ID	Location	FLOC
1028.3	1029.1	407	Cedric Creek valley slopes	
			Slide - shallow/moderate deep	0.00E+00
			Drainage and groundwater control	
			Major slope and crest grading	
			May require major grading and drainage/groundwater control.	
1028.45	1028.55	360	Cedric Creek	
			Lateral Migration	0.00E+00
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
1032.72	1032.74	538	Cedric Creek	
			Scour	1.00E-09
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
1035.1	1038.1	408	Side slopes of Morice River valley	
			Slide - shallow/moderate deep	0.00E+00
			Drainage and groundwater control	
			Major slope and crest grading	
			May require major grading and drainage/groundwater control.	
1043.06	1043.42	484	Morice River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			HDD crossing proposed.	
1049	1049.36	269	Crystal Creek	
			Debris Flow	1.00E-06
			Bored crossing	
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements Bored crossing proposed.	
1055.02	1055.1	270	Tributary to Gosnell Creek	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial.	
1057.34	1057.72	271	Tributary to Gosnell Creek	
			Debris Flow	1.00E-07
			Deep burial	

KP Start	KP End	ID	Location	FLOC
			Deep burial.	
1058.24	1058.7	272	Tributary to Gosnell Creek	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial.	
1059.6	1060	273	Tributary to Gosnell Creek	
			Debris Flow	1.00E-08
			Deep burial	
1063.76	1064.08	361	Gosnell Creek	
			Lateral Migration	1.00E-07
			Trenchless Methods enter/exit outside extents of lateral migration	
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Bored crossing proposed. Regardless of method used, pipeline to be below depth of scour across vulner area.	able
1071.06	1072.06	274	Tributary to Burnie River Fan	
			Debris Flow	1.00E-07
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
1075.2	1075.65	409	East approach slope to Burnie and Clore River valleys	
			Slide - shallow/moderate deep	1.00E-08
			Major slope and crest grading	
			Drainage and groundwater control	
			Bored crossing proposed. May require major grading and drainage/groundwater control.	
1076.3	1076.56	526	Tributary to Burnie River	
			Lateral Migration	1.00E-08
			Sag bends beyond long-term hydrotechnical design limits	
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
1077.4	1077.94	362	Clore River	
			Lateral Migration	1.00E-04
			Trenchless Methods enter/exit outside extents of lateral migration	
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Reroute	

KP Start	KP End	ID	Location	FLOC
			Trenchless crossing proposed. Regardless of method used, pipeline to be below depth of scour a vulnerable area. Crossing to be set back to account for conceivable lateral migration. A reroute to the south may aerial or trenched crossing methods.	
			FLOC calculated assuming either a trenchless method outside extents of lateral migration or a re	eroute south.
1083.78	1084.6	410	Tributary to Clore River and adjacent areas	
			Slide - shallow/moderate deep	1.00E-06
			Major slope and crest grading	
1084.9	1084.94	275	Tributary to Clore River crossing	
			Debris Flow	0.00E+00
			HDD or Aerial installation	
			Aerial crossing proposed.	
1092.02	1092.08	363	Hoult Creek	
			Lateral Migration	1.00E-11
			Trenchless Methods enter/exit outside extents of lateral migration	1.002 11
			HDD or Aerial installation	
			Aerial crossing.	
1092.12	1106.42	411	Hoult Creek and Upper Kitimat River valley	
			Slide - shallow/moderate deep	1.00E-07
			Drainage and groundwater control	
			Surface water control	
			Minor slope and crest grading	
			Deep cover, grading, drainage and groundwater control and/or surface water control as require	d.
1093.1	1093.12	277	Hoult Creek Valley	
			Debris Flow	1.00E-06
			Concrete coating or protection	
			Deep burial	
			Deep burial concrete fill over pipe due to steep gradients.	
1094.08	1094.1	502	Hoult Creek Valley	
			Debris Flow	1.00E-06
			Deep burial	
1094.48	1095.1	39	Hoult Creek Valley	
			Rockfall	1.00E-06
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Deep burial	
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	

KP Start	KP End	ID	Location	FLOC
			Note that debris flow mitigation for same channel will require deep cover.	
1095.1	1095.38	279	Hoult Creek Valley	
			Debris Flow	1.00E-05
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep burial.	
1095.38	1095.78	41	Hoult Creek Valley	
			Rockfall	1.00E-06
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Check block size. Note that debris flow mitigation for same channel will require deep cover.	
1095.82	1096.84	242	Hoult Creek Valley	
			Avalanche	1.00E-08
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1096.84	1097.06	43	Hoult Creek Valley	
			Rockfall	1.00E-06
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1097.06	1097.2	283	Hoult Creek Valley	
			Debris Flow	1.00E-06
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Deep burial.	
1097.22	1007 29	EOG		
1031.25	1097.38	506	Hoult Creek Valley	
			Debris Flow	1.00E-06
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial (established on max particle impact energy) and/or extra compaction	

KP Start	KP End	ID	Location	FLOC
			Deep burial	
1097.38	1097.48	510	Hoult Creek Valley	
		[Avulsion	1.00E-06
		P	Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Note that debris flow mitigation for same channel will require deep cover.	
1097.48	1098.04	45	Hoult Creek Valley	
		[Rockfall	1.00E-07
		-	Heavy wall pipe	
			Heavy wall pipe	
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Heavy wall pipe	
			Heavy wall pipe	
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Note that debris flow mitigation for same channel will require deep cover and heavy wall pipe.	
1099.05	1104.2	412	Hunter Creek valley slopes	
			Slide - shallow/moderate deep	0.00E+00
			Deep burial below slide	
			HDD crossing proposed. Slides have been avoided by routing.	
1103.86	1104.22	488	Hunter Creek	
		[Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements HDD or Aerial installation	
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of	
			channel movements	
			HDD crossing proposed.	
1106.56	1106.62	287	Upper Kitimat River valley	
		[Debris Flow	1.00E-06
		-	Deep burial	
			Deep burial.	
1106.62	1124.62	413	Upper Kitimat River valley	
		[Slide - shallow/moderate deep	1.00E-07
			Minor slope and crest grading	
			Surface water control	

KP Start	KP End	ID	Location	FLOC
			Deep cover, grading, drainage and groundwater control and/or surface water control as required.	
1106.96	1107.42	18	Upper Kitimat River valley	
		Γ	Avulsion	1.00E-08
		-	Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Note that debris flow mitigation for same channel will require deep cover.	
1107.52	1107.8	19	Upper Kitimat River valley	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Heavy wall pipe	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1110.36	1110.44	290	Upper Kitimat River valley	
			Debris Flow	1.00E-06
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial.	
1113.38	1113.4	21	Upper Kitimat River valley	
			Avulsion	1.00E-09
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1113.7	1113.8	292	Upper Kitimat River valley	
			Debris Flow	1.00E-07
			Deep burial	
			Deep burial	
1113.7	1113.82	414	North Side Kitimat River	
			Slide - shallow/moderate deep	1.00E-06
			Drainage and groundwater control	
			Surface water control	
			Minor slope and crest grading	
1114.04	1114.12	22	Upper Kitimat River valley	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	

KP Start	KP End	ID	Location	FLOC
			Note that debris flow mitigation for same channel will require deep cover.	
1114.68	1114.74	23	Upper Kitimat River valley	
			Avulsion	1.00E-06
		-	Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1114.86	1114.98	24	Upper Kitimat River valley	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Note that debris flow mitigation for same channel will require deep cover.	
1115.28	1115.32	512	Upper Kitimat River valley	
		[Debris Flow	1.00E-07
			Deep burial	
			Deep burial	
1115.6	1135.64	513	Upper Kitimat River valley	
		[Debris Flow	1.00E-07
			Deep burial	
			Deep burial	
1116.28	1116.6	25	Upper Kitimat River valley	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Deep burial	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Note that debris flow mitigation for same channel will require deep cover.	
1117.16	1117.28	297	Upper Kitimat River valley	
			Debris Flow	1.00E-06
			Deep burial	
			Deep burial.	
1117.94	1118.36	26	Upper Kitimat River valley	
			Avulsion	1.00E-08
		-	Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	

KP Start	KP End	ID	Location	FLOC
1119.36	1119.52	299	Upper Kitimat River valley	
			Debris Flow	1.00E-05
			Deep burial	
			Deep burial.	
1119.38	1119.6	27	Upper Kitimat River valley	
			Avulsion	1.00E-06
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Note that debris flow mitigation for same channel will require deep cover.	
1119.44	1120.24	50	Upper Kitimat River valley	
			Rockfall	1.00E-07
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Deep burial plus additional protection depending on results of field check.	
1120	1120.62	300	Upper Kitimat River valley	
			Debris Flow	1.00E-05
			Deep burial	
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
1121.22	1121.34	29	Upper Kitimat River valley	
			Avulsion	1.00E-09
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1121.94	1122.1	30	Upper Kitimat River valley	
			Avulsion	1.00E-06
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	
1126.12	1128.26	51	Upper Kitimat River valley	
			Rockfall	1.00E-06
			Deep burial (established on max particle impact energy) and/or extra compaction	
1127.48	1127.82	31	Upper Kitimat River valley	
			Avulsion	1.00E-08
			Pipeline below maximum predicted scour depth along alluvial fan impact area	
			Deep burial	
			Note that debris flow mitigation for same channel will require deep cover.	

KP Start	KP End	ID	Location	FLOC
1128.26	1128.6	489	Chist Creek	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Armoured stream banks suitably designed	
			HDD crossing proposed.	
1136.68	1136.74	514	Cecil Creek	
			Scour	1.00E-08
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Bored crossing proposed.	
1142.4	1142.52	52	Eastern flank on Iron Mountain	
			Rockfall	1.00E-05
			Deep burial (established on max particle impact energy) and/or extra compaction Diversion berm	
			Deep cover berms and/or other protection as required	
1148.6	1148.7	53	Southeast flank of Iron Mountain	
			Rockfall	1.00E-05
			Diversion berm	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Deep cover and berms and/or additional protection as required.	
1149.52	1152.32	430	Wedeene River area	
			Lateral Spreading	4.00E-07
			Reroute to avoid areas of sensitive clays	
			Use routing and crossing design to avoid sensitive clays. Further investigation required for sensitive clays	
1150.08	1150.14	490	Wedeene River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			HDD crossing proposed.	
1150.18	1150.38	418	Wedeene River west valley slope	
			Slide - shallow/moderate deep	1.00E-08
			Deep burial below slide	
			HDD crossing proposed.	
1152.32	1155.82	431	Little Wedeene River Area	
			Lateral Spreading	4.00E-08
			Reroute to avoid areas of sensitive clays	

KP Start	KP End	ID	Location	FLOC
			Use routing and crossing design to avoid areas prone to lateral spreading. Possible reroute along the ro to the west. Further investigation required for sensitive clays.	ck slopes
1153.74	1153.86	420	Little Wedeene River North terrace face	
			Slide - shallow/moderate deep	1.00E-06
			Major slope and crest grading	
1154.1	1154.86	491	Little Wedeene River	
			Scour	1.00E-06
			Trenchless methods with depths beyond max. theoretical scour depth and beyond limits of channel movements	
			Trenchless Methods enter/exit outside extents of lateral migration	
			Bored crossing proposed.	
1155.82	1177.62	432	Kitimat Area	
			Lateral Spreading	4.00E-07
			Reroute to avoid areas of sensitive clays	
			Use routing to avoid areas prone to lateral spreading. Possible reroute using a ridge in the Kitimat River east of the current alignment. Further investigations required for sensitive clays.	Valley
1158.8	1160	369	West of Kitimat River	
			Lateral Migration	1.00E-06
			Reroute	
			River training measures suitably designed	
			Relocation if required by further study. Buried self launching riprap could also be considered.	
			Select only reroute or riprap, mitigations are not multiplicative.	
1164	1164.64	370	Kitimat River near gravel pit	
			Lateral Migration	1.00E-05
			Reroute	
			River training measures suitably designed	
			River training measures if required by further study. Possible relocation.	
			Select only reroute or river training, mitigations are not multiplicative.	
1169.1	1169.26	492	Anderson Creek	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
1170.38	1170.5	304	Moore Creek	
			Debris Flow	0.00E+00
			Aerial crossing	
			Aerial crossing proposed.	

KP Start KF	P End	ID	Location	FLOC
1171.92 1	1173.64	55	West side of Kitimat Arm	
			Rockfall	1.00E-06
			Concrete coating or protection	
			Diversion berm	
			Deep burial (established on max particle impact energy) and/or extra compaction	
			Mitigative options to be finalized based on detailed terrain conditions.	
1172.52 1	1176.72	422	West side of Kitimat Arm	
			Slide - shallow/moderate deep	1.00E-06
			Drainage and groundwater control	
			Major slope and crest grading	
1174.48 1	L174.66	305	West side of Kitimat Arm	
			Debris Flow	1.00E-07
			Deep burial	
1175.48 1	1174.66	493	West side of Kitimat Arm	
			Scour	1.00E-08
			Pipeline below maximum predicted scour depth for 1:100 or 1:200 peak flows	
			Note that debris flow mitigation for same channel will require deep cover.	
1177.6	1177.6	433	Kitimat Terminal	
			Lateral Spreading	4.00E-08
			Reroute to avoid areas of sensitive clays	
			Facilities to be located outside of extents of significant fine-grained soils. Detailed investigations have to facilitate detailed design.	ve been done

367 Records